
Allen-BradleyMicro800 Ethernet Driver

© 2016 PTC Inc. All Rights Reserved.

Allen-Bradley Micro800 Ethernet Driver

TableofContents
Allen-Bradley Micro800 Ethernet Driver 1

Table of Contents 2

Overview 6

Setup 7

Channel Properties - General 7

Channel Properties - Ethernet Communications 8

Channel Properties - Write Optimizations 8

Channel Properties - Advanced 9

Device Properties - General 10

Channel Properties - Communication Serialization 12

Device Properties - Scan Mode 13

Device Properties - Timing 14

Device Properties - Auto-Demotion 15

Device Properties - Communications Parameters 15

Device Properties - Options 16

Device Properties - Redundancy 16

Performance Optimizations 17

Optimizing Communications 17

Optimizing Applications 17

Data Types Description 19

Address Descriptions 19

Address Formats 20

Tag Scope 22

Addressing Atomic Data Types 23

Addressing Structured Data Types 24

Ordering of Array Data 24

Advanced Use Cases 26

BOOL 26

SINT, USINT, and BYTE 27

INT, UINT, and WORD 30

DINT, UDINT, and DWORD 32

LINT, ULINT, and LWORD 35

REAL 36

LREAL 39

SHORT_STRING 40

Error Codes 43

Encapsulation Protocol Error Codes 43

www.kepware.com

2

Allen-Bradley Micro800 Ethernet Driver

CIP Error Codes 43

0x0001 Extended Error Codes 44

0x001F Extended Error Codes 45

0x00FF Extended Error Codes 45

Event Log Messages 46

Controller not supported. | Vendor ID = <vendor>, Product type = <type>, Product code = <code>,
Product name = '<product>'. 46

Frame received from device contains errors. 46

Write request for tag failed due to a framing error. | Tag address = '<address>'. 46

Read request for tag failed due to a framing error. | Tag address = '<address>'. 47

Block read request failed due to a framing error. | Block start = '<address>', Block size =
<number> (elements). 47

Unable to write to tag on device. | Tag address = '<address>', CIP error = <code>, Extended error
= <code>. 47

Unable to read tag from device. | Tag address = '<address>', CIP error = <code>, Extended error
= <code>. 47

Unable to read block from device. | Block start = '<address>', Block size = <number>, CIP error =
<code>, Extended error = <code>. 48

Unable to write to tag on device. Controller tag data type unknown. | Tag address = '<address>',
Unknown data type = <type>. 48

Unable to read tag from device. Controller tag data type unknown. Tag deactivated. | Tag
address = '<address>', Unknown data type = <type>. 48

Unable to read block from device. Controller tag data type unknown. Block deactivated. | Block
start = '<address>', Block size = <number>, Unknown data type = <type>. 49

Unable to write to tag on device. Data type not supported. | Tag address = '<address>',
Unsupported data type = '<type>'. 49

Unable to read tag from device. Data type not supported. Tag deactivated. | Tag address =
'<address>', Unsupported data type = '<type>'. 49

Unable to read block from device. Data type not supported. Block deactivated. | Block start =
'<address>', Block size = <number> (elements), Unsupported data type = '<type>'. 50

Unable to write to tag. Data type is illegal for tag. | Tag address = '<address>', Illegal data type =
'<type>'. 50

Unable to read tag from device. Data type is illegal for this tag. Tag deactivated. | Tag address =
'<address>', Illegal data type = '<type>'. 50

Unable to read block from device. Data type is illegal for this block. Block deactivated. | Block
start = '<address>', Block size = <number> (elements), Illegal data type = '<type>'. 51

Unable to write to tag on device. Tag does not support multi-element arrays. | Tag address =
'<address>'. 51

Unable to read tag from device. Tag does not support multi-element arrays. Tag deactivated. |
Tag address = '<address>'. 51

Unable to read block from device. Block does not support multi-element arrays. Block
deactivated. | Block start = '<address>', Block size = <number> (elements). 52

www.kepware.com

3

Allen-Bradley Micro800 Ethernet Driver

Unable to write to tag on device. | Tag address = '<address>'. 52

Unable to read tag from device. Tag deactivated. | Tag address = '<address>'. 52

Unable to read block from device. Block deactivated. | Block start = '<address>', Block size =
<number>. 53

Device responded with CIP error. | Status code = <code>, Extended status code = <code>. 53

Memory could not be allocated for tag. | Tag address = '<address>'. 53

Device responded with encapsulation error. 54

Unable to read tag from device. Internal memory is invalid. | Tag address = '<address>'. 54

Unable to read tag from device. Data type is illegal for tag. | Tag address = '<address>', Illegal
data type = '<type>'. 54

Unable to read tag from device. Internal memory is invalid. Tag deactivated. | Tag address =
'<address>'. 55

Unable to read block from device. Internal memory is invalid. Block deactivated. | Block start =
'<address>', Block size = <number> (elements). 55

Unable to write to address on device. Internal memory is invalid. | Tag address = '<address>'. 55

Unable to read block from device. Block deactivated. | Block start = '<address>', Block size =
<number>, CIP error = <code>, Extended error = <code>. 55

Device identity details. | IP = '<address>', Vendor ID = <vendor>, Product type = <type>, Product
code = <code>, Revision = '<revision>', Product name = '<product>', Product S/N = <serial
number>. 55

Device does not support Fragmented Read/Write Services. Automatically falling back to Non-
Fragmented Services. 55

Glossary 56

Index 57

www.kepware.com

4

Allen-Bradley Micro800 Ethernet Driver

Allen-Bradley Micro800 Ethernet Driver
Help version 1.026

CONTENTS

Overview
What is the Allen-Bradley Micro800 Ethernet Driver?

Device Setup
How do I configure a device for use with this driver?

Performance Optimizations
How do I get the best performance from the Allen-Bradley Micro800 Ethernet Driver?

Data Types Description
What data types does this driver support?

Address Descriptions
How do I address a tag on an Allen-Bradley Micro800 Ethernet device?

Error Codes
What are the Allen-Bradley Micro800 Ethernet error codes?

Event Log Messages
What messages does this driver produce?

Glossary
Where can I find a list of terms relating to Allen-Bradley Micro800 Ethernet?

www.kepware.com

5

Allen-Bradley Micro800 Ethernet Driver

Overview
The Allen-Bradley Micro800 Ethernet Driver provides a reliable way to connect Allen-Bradley Micro800
Ethernet controllers to OPC client applications; including HMI, SCADA, Historian, MES, ERP, and countless
custom applications.

www.kepware.com

6

Allen-Bradley Micro800 Ethernet Driver

Setup
Supported Devices
Micro850 via embedded Ethernet port.

Communication Protocol
Ethernet/IP (CIP over Ethernet) using TCP/IP.

Maximum Number of Channels and Devices
The maximum number of channels supported is 256. The maximum number of devices supported per
channel is 1024.

Channel Setup
Channel setup includes configuration of the following property groups:
General
Ethernet Communications
Write Optimizations
Advanced
Communications Serialization

Device Setup
Device setup includes configuration of the following property groups:
General
Scan Mode
Timing
Auto Demotion
Communication Parameters
Options
Redundancy

Channel Properties - General
This server supports the use of simultaneous multiple communications drivers. Each protocol or driver used
in a server project is called a channel. A server project may consist of many channels with the same
communications driver or with unique communications drivers. A channel acts as the basic building block of
an OPC link. This group is used to specify general channel properties, such as the identification attributes
and operating mode.

Identification

www.kepware.com

7

Allen-Bradley Micro800 Ethernet Driver

Name: User-defined identity of this channel. In each server project, each channel name must be unique.
Although names can be up to 256 characters, some client applications have a limited display window when
browsing the OPC server's tag space. The channel name is part of the OPC browser information.
For information on reserved characters, refer to "How To... Properly Name a Channel, Device, Tag, and Tag

Group" in the server help.

Description: User-defined information about this channel.
 Many of these properties, including Description, have an associated system tag.

Driver: Selected protocol / driver for this channel. This property specifies the device driver that was selected
during channel creation. It is a disabled setting in the channel properties.

Note: With the server's online full-time operation, these properties can be changed at any time. This
includes changing the channel name to prevent clients from registering data with the server. If a client has
already acquired an item from the server before the channel name is changed, the items are unaffected. If,
after the channel name has been changed, the client application releases the item and attempts to re-
acquire using the old channel name, the item is not accepted. With this in mind, changes to the properties
should not be made once a large client application has been developed. Utilize the User Manager to prevent
operators from changing properties and restrict access rights to server features.

Diagnostics

Diagnostics Capture: When enabled, this option makes the channel's diagnostic information available to
OPC applications. Because the server's diagnostic features require a minimal amount of overhead
processing, it is recommended that they be utilized when needed and disabled when not. The default is
disabled.
For more information, refer to "Communication Diagnostics" in the server help.

Not all drivers support diagnostics. To determine whether diagnostics are available for a particular driver, open
the driver information and locate the "Supports device level diagnostics" statement.

Channel Properties - Ethernet Communications
Ethernet Communication can be used to communicate with devices.

Ethernet Settings

Network Adapter: Specify the network adapter to bind. When Default is selected, the operating system
selects the default adapter.

Channel Properties - Write Optimizations
As with any OPC server, writing data to the device may be the application's most important aspect. The
server intends to ensure that the data written from the client application gets to the device on time. Given
this goal, the server provides optimization properties that can be used to meet specific needs or improve
application responsiveness.

www.kepware.com

8

Allen-Bradley Micro800 Ethernet Driver

Write Optimizations

Optimization Method: controls how write data is passed to the underlying communications driver. The
options are:

l Write All Values for All Tags: This option forces the server to attempt to write every value to the
controller. In this mode, the server continues to gather write requests and add them to the server's
internal write queue. The server processes the write queue and attempts to empty it by writing data
to the device as quickly as possible. This mode ensures that everything written from the client
applications is sent to the target device. This mode should be selected if the write operation order or
the write item's content must uniquely be seen at the target device.

l Write Only Latest Value for Non-Boolean Tags: Many consecutive writes to the same value can
accumulate in the write queue due to the time required to actually send the data to the device. If the
server updates a write value that has already been placed in the write queue, far fewer writes are
needed to reach the same final output value. In this way, no extra writes accumulate in the server's
queue. When the user stops moving the slide switch, the value in the device is at the correct value at
virtually the same time. As the mode states, any value that is not a Boolean value is updated in the
server's internal write queue and sent to the device at the next possible opportunity. This can greatly
improve the application performance.

Note: This option does not attempt to optimize writes to Boolean values. It allows users to
optimize the operation of HMI data without causing problems with Boolean operations, such as a
momentary push button.

l Write Only Latest Value for All Tags: This option takes the theory behind the second optimization
mode and applies it to all tags. It is especially useful if the application only needs to send the latest
value to the device. This mode optimizes all writes by updating the tags currently in the write queue
before they are sent. This is the default mode.

Duty Cycle: is used to control the ratio of write to read operations. The ratio is always based on one read for
every one to ten writes. The duty cycle is set to ten by default, meaning that ten writes occur for each read
operation. Although the application is performing a large number of continuous writes, it must be ensured
that read data is still given time to process. A setting of one results in one read operation for every write
operation. If there are no write operations to perform, reads are processed continuously. This allows
optimization for applications with continuous writes versus a more balanced back and forth data flow.

Note: It is recommended that the application be characterized for compatibility with the write
optimization enhancements before being used in a production environment.

Channel Properties - Advanced
This group is used to specify advanced channel properties. Not all drivers support all properties; so the
Advanced group does not appear for those devices.

www.kepware.com

9

Allen-Bradley Micro800 Ethernet Driver

Non-Normalized Float Handling: Non-normalized float handling allows users to specify how a driver
handles non-normalized IEEE-754 floating point data. A non-normalized value is defined as Infinity, Not-a-
Number (NaN), or as a Denormalized Number. The default is Replace with Zero. Drivers that have native
float handling may default to Unmodified. Descriptions of the options are as follows:

l Replace with Zero: This option allows a driver to replace non-normalized IEEE-754 floating point
values with zero before being transferred to clients.

l Unmodified: This option allows a driver to transfer IEEE-754 denormalized, normalized, non-
number, and infinity values to clients without any conversion or changes.

Note: This property is disabled if the driver does not support floating point values or if it only supports the
option that is displayed. According to the channel's float normalization setting, only real-time driver tags
(such as values and arrays) are subject to float normalization. For example, EFM data is not affected by this
setting.lin

For more information on the floating point values, refer to "How To ... Work with Non-Normalized Floating
Point Values" in the server help.

Inter-Device Delay: Specify the amount of time the communications channel waits to send new requests to
the next device after data is received from the current device on the same channel. Zero (0) disables the
delay.

Note: This property is not available for all drivers, models, and dependent settings.

Device Properties - General
A device represents a single target on a communications channel. If the driver supports multiple controllers,
users must enter a device ID for each controller.

Identification

Name: This property specifies the name of the device. It is a logical user-defined name that can be up to
256 characters long, and may be used on multiple channels.

www.kepware.com

10

Allen-Bradley Micro800 Ethernet Driver

Note: Although descriptive names are generally a good idea, some OPC client applications may have a
limited display window when browsing the OPC server's tag space. The device name and channel name
become part of the browse tree information as well. Within an OPC client, the combination of channel name
and device name would appear as "ChannelName.DeviceName".

For more information, refer to "How To... Properly Name a Channel, Device, Tag, and Tag Group" in server
help.

Description: User-defined information about this device.
Many of these properties, including Description, have an associated system tag.

Channel Assignment: User-defined name of the channel to which this device currently belongs.

Driver: Selected protocol driver for this device.

Model: This property specifies the specific type of device that is associated with this ID. The contents of the
drop-down menu depends on the type of communications driver being used. Models that are not supported
by a driver are disabled. If the communications driver supports multiple device models, the model selection
can only be changed when there are no client applications connected to the device.

Note: If the communication driver supports multiple models, users should try to match the model
selection to the physical device. If the device is not represented in the drop-down menu, select a model that
conforms closest to the target device. Some drivers support a model selection called "Open," which allows
users to communicate without knowing the specific details of the target device. For more information, refer
to the driver help documentation.

ID: This property specifies the device's driver-specific station or node. The type of ID entered depends on
the communications driver being used. For many communication drivers, the ID is a numeric value. Drivers
that support a Numeric ID provide users with the option to enter a numeric value whose format can be
changed to suit the needs of the application or the characteristics of the selected communications driver.
The ID format can be Decimal, Octal, and Hexadecimal.

Note: If the driver is Ethernet-based or supports an unconventional station or node name, the device's
TCP/IP address may be used as the device ID. TCP/IP addresses consist of four values that are separated by
periods, with each value in the range of 0 to 255. Some device IDs are string based. There may be additional
properties to configure within the ID field, depending on the driver. For more information, refer to the
driver's help documentation.

Operating Mode

Data Collection: This property controls the device's active state. Although device communications are
enabled by default, this property can be used to disable a physical device. Communications are not
attempted when a device is disabled. From a client standpoint, the data is marked as invalid and write
operations are not accepted. This property can be changed at any time through this property or the device
system tags.

Simulated: This option places the device into Simulation Mode. In this mode, the driver does not attempt to
communicate with the physical device, but the server continues to return valid OPC data. Simulated stops
physical communications with the device, but allows OPC data to be returned to the OPC client as valid data.
While in Simulation Mode, the server treats all device data as reflective: whatever is written to the simulated
device is read back and each OPC item is treated individually. The item's memory map is based on the group
Update Rate. The data is not saved if the server removes the item (such as when the server is reinitialized).
The default is No.

www.kepware.com

11

Allen-Bradley Micro800 Ethernet Driver

Notes:

1. This System tag (_Simulated) is read only and cannot be written to for runtime protection. The System
tag allows this property to be monitored from the client.

2. In Simulation mode, the item's memory map is based on client update rate(s) (Group Update Rate for
OPC clients or Scan Rate for native and DDE interfaces). This means that two clients that reference
the same item with different update rates return different data.

 Simulation Mode is for test and simulation purposes only. It should never be used in a production
environment.

Channel Properties - Communication Serialization
The server's multi-threading architecture allows channels to communicate with devices in parallel. Although
this is efficient, communication can be serialized in cases with physical network restrictions (such as
Ethernet radios). Communication serialization limits communication to one channel at a time within a virtual
network.

The term "virtual network" describes a collection of channels and associated devices that use the same
pipeline for communications. For example, the pipeline of an Ethernet radio is the master radio. All channels
using the same master radio associate with the same virtual network. Channels are allowed to communicate
each in turn, in a “round-robin” manner. By default, a channel can process one transaction before handing
communications off to another channel. A transaction can include one or more tags. If the controlling
channel contains a device that is not responding to a request, the channel cannot release control until the
transaction times out. This results in data update delays for the other channels in the virtual network.

Channel-Level Settings

Virtual Network This property specifies the channel's mode of communication serialization. Options
include None and Network 1 - Network 50. The default is None. Descriptions of the options are as follows:

l None: This option disables communication serialization for the channel.

l Network 1 - Network 50: This option specifies the virtual network to which the channel is
assigned.

Transactions per Cycle This property specifies the number of single blocked/non-blocked read/write
transactions that can occur on the channel. When a channel is given the opportunity to communicate, this
number of transactions attempted. The valid range is 1 to 99. The default is 1.

Global Settings

l Network Mode: This property is used to control how channel communication is delegated. In Load
Balanced mode, each channel is given the opportunity to communicate in turn, one at a time. In

www.kepware.com

12

Allen-Bradley Micro800 Ethernet Driver

Priority mode, channels are given the opportunity to communicate according to the following rules
(highest to lowest priority):

l Channels with pending writes have the highest priority.

l Channels with pending explicit reads (through internal plug-ins or external client interfaces)
are prioritized based on the read’s priority.

l Scanned reads and other periodic events (driver specific).

The default is Load Balanced and affects all virtual networks and channels.

 Devices that rely on unsolicited responses should not be placed in a virtual network. In situations where
communications must be serialized, it is recommended that Auto-Demotion be enabled.

Due to differences in the way that drivers read and write data (such as in single, blocked, or non-blocked
transactions); the application's Transactions per cycle property may need to be adjusted. When doing so,
consider the following factors:

l How many tags must be read from each channel?

l How often is data written to each channel?

l Is the channel using a serial or Ethernet driver?

l Does the driver read tags in separate requests, or are multiple tags read in a block?

l Have the device's Timing properties (such as Request timeout and Fail after x successive timeouts)
been optimized for the virtual network's communication medium?

Device Properties - Scan Mode
The Scan Mode specifies the subscribed-client requested scan rate for tags that require device
communications. Synchronous and asynchronous device reads and writes are processed as soon as
possible; unaffected by the Scan Mode properties.

Scan Mode: specifies how tags in the device are scanned for updates sent to subscribed clients.
Descriptions of the options are:

l Respect Client-Specified Scan Rate: This mode uses the scan rate requested by the client.
l Request Data No Faster than Scan Rate: This mode specifies the maximum scan rate to be used.

The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.
Note: When the server has an active client and items for the device and the scan rate value is

increased, the changes take effect immediately. When the scan rate value is decreased, the changes
do not take effect until all client applications have been disconnected.

l Request All Data at Scan Rate: This mode forces tags to be scanned at the specified rate for
subscribed clients. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.

l Do Not Scan, Demand Poll Only: This mode does not periodically poll tags that belong to the
device nor perform a read to get an item's initial value once it becomes active. It is the client's
responsibility to poll for updates, either by writing to the _DemandPoll tag or by issuing explicit device
reads for individual items. For more information, refer to "Device Demand Poll" in server help.

www.kepware.com

13

Allen-Bradley Micro800 Ethernet Driver

l Respect Tag-Specified Scan Rate: This mode forces static tags to be scanned at the rate specified
in their static configuration tag properties. Dynamic tags are scanned at the client-specified scan
rate.

Initial Updates from Cache: When enabled, this option allows the server to provide the first updates for
newly activated tag references from stored (cached) data. Cache updates can only be provided when the
new item reference shares the same address, scan rate, data type, client access, and scaling properties. A
device read is used for the initial update for the first client reference only. The default is disabled; any time a
client activates a tag reference the server attempts to read the initial value from the device.

Device Properties - Timing
The device Communications Timeouts properties allow the driver's response to error conditions to be
tailored to fit the application's needs. In many cases, the environment requires changes to these properties
for optimum performance. Factors such as electrically generated noise, modem delays, and poor physical
connections can influence how many errors or timeouts a communications driver encounters.
Communications Timeouts properties are specific to each configured device.

Communications Timeouts

Connect Timeout: This property (which is used primarily by Ethernet based drivers) controls the amount of
time required to establish a socket connection to a remote device. The device's connection time often takes
longer than normal communications requests to that same device. The valid range is 1 to 30 seconds. The
default is typically 3 seconds, but can vary depending on the driver's specific nature. If this setting is not
supported by the driver, it is disabled.

Note: Due to the nature of UDP connections, the connection timeout setting is not applicable when
communicating via UDP.

Request Timeout: This property specifies an interval used by all drivers to determine how long the driver
waits for a response from the target device to complete. The valid range is 50 to 9,999,999 milliseconds
(167.6667 minutes). The default is usually 1000 milliseconds, but can vary depending on the driver. The
default timeout for most serial drivers is based on a baud rate of 9600 baud or better. When using a driver
at lower baud rates, increase the timeout to compensate for the increased time required to acquire data.

Retry Attempts: This property specifies how many times the driver retries a communications request
before considering the request to have failed and the device to be in error. The valid range is 1 to 10. The
default is typically 3, but can vary depending on the driver's specific nature. The number of retries
configured for an application depends largely on the communications environment.

Timing

Inter-Request Delay: This property specifies how long the driver waits before sending the next request to
the target device. It overrides the normal polling frequency of tags associated with the device, as well as

www.kepware.com

14

Allen-Bradley Micro800 Ethernet Driver

one-time reads and writes. This delay can be useful when dealing with devices with slow turnaround times
and in cases where network load is a concern. Configuring a delay for a device affects communications with
all other devices on the channel. It is recommended that users separate any device that requires an inter-
request delay to a separate channel if possible. Other communications properties (such as communication
serialization) can extend this delay. The valid range is 0 to 300,000 milliseconds; however, some drivers may
limit the maximum value due to a function of their particular design. The default is 0, which indicates no
delay between requests with the target device.

Note: Not all drivers support Inter-Request Delay. This setting does not appear if it is not supported by the
driver.

Device Properties - Auto-Demotion
The Auto-Demotion properties can temporarily place a device off-scan in the event that a device is not
responding. By placing a non-responsive device offline for a specific time period, the driver can continue to
optimize its communications with other devices on the same channel. After the time period has been
reached, the driver re-attempts to communicate with the non-responsive device. If the device is responsive,
the device is placed on-scan; otherwise, it restarts its off-scan time period.

Demote on Failure: When enabled, the device is automatically taken off-scan until it is responding again.
Tip: Determine when a device is off-scan by monitoring its demoted state using the _AutoDemoted

system tag.

Timeouts to Demote: Specify how many successive cycles of request timeouts and retries occur before the
device is placed off-scan. The valid range is 1 to 30 successive failures. The default is 3.

Demotion Period: Indicate how long the device should be placed off-scan when the timeouts value is
reached. During this period, no read requests are sent to the device and all data associated with the read
requests are set to bad quality. When this period expires, the driver places the device on-scan and allows for
another attempt at communications. The valid range is 100 to 3600000 milliseconds. The default is 10000
milliseconds.

Discard Requests when Demoted: Select whether or not write requests should be attempted during the
off-scan period. Disable to always send write requests regardless of the demotion period. Enable to discard
writes; the server automatically fails any write request received from a client and does not post a message
to the Event Log.

Device Properties - Communications Parameters

www.kepware.com

15

Allen-Bradley Micro800 Ethernet Driver

TCP/IP

Port: Specify the port number the device is configured to use. The valid range is 0 to 65535. The default is
44818.

CIP

Inactivity Watchdog: Indicate the amount of time, in seconds, a connection can remain idle (without
read/write transactions) before being closed by the controller. In general, the larger the Inactivity Watchdog
value, the more time it takes for connection resources to be released by the controller (and vice versa). The
default is 32 seconds.

Device Properties - Options

Project

Default Data Type: Select the data type assigned to a client / server tag when the default type is selected
during tag addition / modification / import. The default is Float. Tags are assigned the default data type when
a dynamic tag is created in the client with Native as its assigned data type and when a static tag is created in
the server with Default as its assigned data type.

Data Access

Array Block Size: Specify the maximum number of atomic array elements to read in a single transaction.
The range is from 30 to 3840 elements. The default is 120 elements.

For Boolean arrays, a single element is considered a 32-element bit array. Setting the block size to 30
elements translates to 960 bit elements, whereas 3840 elements translate to 122880 bit elements.

Device Properties - Redundancy

Redundancy is available with the Media-Level Redundancy Plug-in.

Consult the website, a sales representative, or the user manual for more information.

www.kepware.com

16

Allen-Bradley Micro800 Ethernet Driver

Performance Optimizations
The Allen-Bradley Micro800 Ethernet Driver is fast, but a few guidelines may be applied to gain maximum
performance. For more information on optimization at the communications and application levels, select a
link from the list below.

Optimizing Communications
Optimizing Applications

Optimizing Communications
As with any programmable controller, there are a variety of ways to enhance the overall performance and
system communications.

Keep Native Tag Names Short
Native Tags reads from and writes to the device specify its symbolic name in the communications request.
As such, the longer the tag name is, the larger the request.

Array Elements Blocked
To optimize the reading of atomic array elements, read a block of the array in a single request instead of
individually. The more elements read in a block, the greater the performance. Since transaction overhead
and processing consumes the most time, do as few transactions as possible while scanning as many desired
tags as possible. This is the essence of array element blocking.

Block sizes are specified as an element count. A block size of 120 elements means that a maximum of 120
array elements are read in one request. The maximum block size is 3840 elements. Boolean arrays are
treated differently: in protocol, a Boolean array is a 32-bit array. Thus, requesting element 0 is requesting
bits 0 through 31. To maintain consistency in discussion, a Boolean array element is considered a single bit.
In summary, the maximum number of array elements (based on block size of 3840) that can be requested is
as follows: 122880 BOOL, 3840 SINT, 3840 INT, 3840 DINT, 3840 LINT, and 3840 REAL.

The block size is adjustable, and should be chosen based on the project at hand. For example, if array
elements 0-26 and element 3839 are tags to be read, then using a block size of 3840 is not only overkill, but
detrimental to the driver's performance. This is because all elements between 0 and 3839 are read on each
request, even though only 28 of those elements are of importance. In this case, a block size of 30 is more
appropriate. Elements 0-26 would be serviced in one request and element 3839 would be serviced on the
next.

See Also: Options

Optimizing Applications
The Allen-Bradley Micro800 Ethernet Driver is designed to provide the best performance with the least
amount of impact on the system's overall performance. While the driver is fast, there are a couple of
guidelines that can be used in order to gain maximum performance.

The server refers to communications protocols like Allen-Bradley Micro800 Ethernet as a channel. Each
channel defined in the application represents a separate path of execution in the server. Once a channel has
been defined, a series of devices must then be defined under that channel. Each of these devices represents
a single Micro800 CPU from which data is collected. While this approach to defining the application provides
a high level of performance, it won't take full advantage of the Allen-Bradley Micro800 Ethernet Driver or the
network. An example of how the application may appear when configured using a single channel is shown
below.

www.kepware.com

17

Allen-Bradley Micro800 Ethernet Driver

Each device appears under a single channel, called "Micro800". In this
configuration, the driver must move from one device to the next as quickly as
possible in order to gather information at an effective rate. As more devices are
added or more information is requested from a single device, the overall update
rate begins to suffer.

If the Allen-Bradley Micro800 Ethernet Driver could only define one single channel, then the example shown
above would be the only option available; however, the driver can define up to 256 channels. Using multiple
channels distributes the data collection workload by simultaneously issuing multiple requests to the network.
An example of how the same application may appear when configured using multiple channels to improve
performance is shown below.

Each device has now been defined under its own channel. In this new configuration,
a single path of execution is dedicated to the task of gathering data from each
device. If the application has 256 or fewer devices, it can be optimized exactly how
it is shown here.

The performance improves even if the application has more than 256 devices.
While 256 or fewer devices may be ideal, the application benefits from additional
channels. Although spreading the device load across all channels causes the
server to move from device to device again, it can now do so with far less devices
to process on a single channel.

www.kepware.com

18

Allen-Bradley Micro800 Ethernet Driver

Data Types Description

Data Type Description
Boolean Single bit

Byte Unsigned 8-bit value

Char Signed 8-bit value

Word Unsigned 16-bit value

Short Signed 16-bit value

DWord Unsigned 32-bit value

Long Signed 32-bit value

BCD Two byte packed BCD, four decimal digits

LBCD Four byte packed BCD, eight decimal digits

Float 32-bit IEEE Floating point

Double 64-bit IEEE Floating point

Date 64-bit Date/Time

String Null-terminated character array

Address Descriptions
Micro800 uses a tag or symbol-based addressing structure referred to as Native Tags. These tags differ
from conventional PLC data items in that the tag name itself is the address, not a file or register number.

The Allen-Bradley Micro800 Ethernet Driver allows users to access the controller's atomic data types: BOOL,
SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD, LINT, ULINT, LWORD, REAL, LREAL, and SHORT_
STRING. Although some of the pre-defined types are structures, they are ultimately based on these atomic
data types. Thus, all non-structure (atomic) members of a structure are accessible. For example, a TIMER
cannot be assigned to a server tag but an atomic member of the TIMER can be assigned to the tag (for
example, TIMER.EN, TIMER.ACC, and so forth). If a structure member is a structure itself, both structures
must be expanded to access an atomic member of the substructure. This is more common with user-defined
and module-defined types, and is not found in any of the pre-defined types.

Atomic
Data Type Description Client

Type Range

BOOL Single-bit value VT_
BOOL

0, 1

SINT Signed 8-bit value VT_I1 -128 to 127

USINT Unsigned 8-bit value. VT_UI1 0 to 255

BYTE Bit string (8 bits) VT_UI1 0 to 255

INT Signed 16-bit value VT_I2 -32,768 to 32,767

UINT Unsigned 16-bit value VT_UI2 0 to 65535

WORD Bit string (16 bits) VT_UI2 0 to 65535

DINT Signed 32-bit value VT_I4 -2,147,483,648 to 2,147,483,647

UDINT Unsigned 32-bit value VR_UI4 0 to 4294967296

DWORD Bit string (32 bits) VR_UI4 0 to 4294967296

LINT Signed 64-bit value VT_R8 -1.798E+308 to -2.225E-308, 0, 2.225E-
308 to 1.798E+308

ULINT Unsigned 64-bit value VT_R8 -1.798E+308 to -2.225E-308, 0, 2.225E-

www.kepware.com

19

Allen-Bradley Micro800 Ethernet Driver

Atomic
Data Type Description Client

Type Range

308 to 1.798E+308

LWORD Bit string (64 bits) VT_R8 -1.798E+308 to -2.225E-308, 0, 2.225E-
308 to 1.798E+308

REAL 32-bit IEEE Floating
point

VT_R4 1.1755 E-38 to 3.403E38, 0, -3.403E-38 to
-1.1755

LREAL 64-bit IEEE Floating point VT_R8 -1.798E+308 to -2.225E-308, 0, 2.225E-
308 to 1.798E+308

SHORT_
STRING

Character string. The maximum is
80 characters.

VT_
BSTR

See Also: Advanced Use Cases

Client/Server Tag Address Rules
Native Tag names correspond to Client/Server Tag addresses. Both Native Tag names (entered via the
Connected Components Workbench) and Client/Server Tag addresses follow the IEC 1131-3 identifier rules.
Descriptions of the rules are as follows:

l Must begin with an alphabetic character or an underscore.

l Can only contain alphanumeric characters and underscores.

l Can have as many as 40 characters.

l Cannot have consecutive underscores.

l Characters are not case sensitive.

Client/Server Tag Name Rules
Tag name assignment in the server differs from address assignment in that names cannot begin with an
underscore.

See Also: Performance Optimizations

Address Formats
A Native Tag may be addressed statically in the server or dynamically from a client in several ways. The
tag's format will depend on its type and intended usage. For example, the bit format would be used when
accessing a bit within a SINT-type tag. For information on address format and syntax, refer to the table
below.

Note: Every format is native to Connected Components Workbench (CCW) except for the Array formats.
Therefore, when referencing an atomic data type, a CCW tag name could be copied and pasted into the
server's tag address field and be valid.

See Also: Advanced Use Cases

Format Syntax
Array Element <Native Tag name> [dim 1, dim2, dim 3]

Array w/ Offset* <Native Tag name> {# columns}
<Native Tag name> {# rows}{# columns}

Array w/o Offset* <Native Tag name> {# columns}
<Native Tag name> {# rows}{# columns}

Bit <Native Tag name>.bit

www.kepware.com

20

Allen-Bradley Micro800 Ethernet Driver

Format Syntax
<Native Tag name>.[bit]

Standard <Native Tag name>

String <Native Tag name>

*Since these formats may request more than one element, the order in which array data is passed depends
on the dimension of the array tag. For example, if rows times cols = 4 and the Native Tag is a 3X3 element
array, then the elements that are being referenced are array_tag [0,0], array_tag [0,1], array_tag [0,2], and
array_tag [1,0] in that exact order. The results would be different if the Native Tag were a 2X10 element
array. For more information, refer to Ordering of Array Data.

Expanded Address Formats
Array Element
At least 1 dimension (but no more then 3) must be specified.

Syntax Example Notes
<Native Tag Name> [dim1] tag_1 [5] N/A

<Native Tag name> [dim 1, dim2] tag_1 [2, 3] N/A

<Native Tag name> [dim 1, dim2, dim 3] tag_1 [2, 58, 547] N/A

Array With Offset
Since this class may request more than one element, the order in which array data is passed depends on the
dimension of the Array Tag.

Syntax Example Notes
<Native Tag
name> [offset]
{# of columns}

tag_1 [5]
{8}

The number of elements to Read/Write equals the number of rows
multiplied by the number of columns. If no rows are specified, the
number of rows will default to 1. At least 1 element of the array must be
addressed.

The array begins at a zero offset (array index equals 0 for all
dimensions).

<Native Tag
name> [offset] {#
of rows}{# of
columns}

tag_1 [5]
{2}{4}

Note: If rows*cols = 4 and the Native Tag is a 3X3 element array, then the elements that are being
referenced are array_tag [0,0], array_tag [0,1], array_tag [0,2] and array_tag [1,0] in that exact order. The
results would be different if the Native Tag were a 2X10 element array.

Array Without Offset
Since this class may request more than one element, the order in which array data is passed depends on the
dimension of the Array Tag.

Syntax Example Notes
<Native Tag
name>
{# of columns}

tag_1 {8} The number of elements to Read/Write equals the number of rows
multiplied by the number of columns. If no rows are specified, the number
of rows will default to 1. At least 1 element of the array must be addressed.

The array begins at a zero offset (array index equals 0 for all dimensions).
<Native Tag
name> {# of
rows}{# of
columns}

tag_1 {2}
{4}

www.kepware.com

21

Allen-Bradley Micro800 Ethernet Driver

Note: For example, if rows*cols = 4 and the Native Tag is a 3X3 element array, then the elements that are
being referenced are array_tag [0,0], array_tag [0,1], array_tag [0,2] and array_tag [1,0] in that exact order.
The results would be different if the Native Tag were a 2X10 element array.

Bit

Syntax Example Notes
<Native Tag name> . bit tag_1 . 0 N/A

<Native Tag name> . [bit] tag_1 . [0] N/A

Standard

Syntax Example Notes
<Native Tag name> tag_1 N/A

String

Syntax Example Notes
<Native Tag
name>

tag_1 The number of characters to Read/Write equals the string length and must
be at least 1.

For more information on how elements are referenced for 1, 2 and 3 dimensional arrays, refer to Ordering of
Array Data.

Tag Scope
The scope of variables can be local to a program or global to a controller.

l Local variables are assigned to a specific program in the project; they are available only to that
program.

l Global variables belong to the controller in the project; they are available to any program in the
project.

Local Variables
Local variables (program-scoped tags) cannot be accessed directly through the communications port of the
controller, so are not directly supported within the driver. If access is required, cut and paste the tags from
the Local variable table to the Global variable table.

Global Variables
Global Variables (controller-scoped tags) are Native Tags that have global scope in the controller. Any
program or task can access Global Tags; however, the number of ways a Global Tag can be referenced
depends on both its Native Data Type and the address format being used.

User-Defined Data Types
Users may create unique data types, e.g. STRING with 12 characters rather than 80. These user-defined
data types may be used as local or global variables.

Structured Variables
There are no structured variables in Micro800 controllers. Users may build unique Data Types, but each
member must have a unique name.

www.kepware.com

22

Allen-Bradley Micro800 Ethernet Driver

Addressing Atomic Data Types
The table below contains suggested usage and addressing possibilities for each Native Data Type given the
available address formats. For each data type's advanced addressing possibilities, click Advanced.

Note: Empty cells do not necessarily indicate a lack of support.

BOOL
Tag Standard Array Element Array w/wo Offset Bit String
Data Type

Advanced

Boolean Boolean

(BOOL 1
dimensional array)

Boolean Array

(BOOL 1
dimensional array)

Example BOOLTAG BOOLARR[0] BOOLARR[0]{32}

SINT, USINT, and BYTE
Tag Standard Array Element Array w/wo Offset Bit String
Data Type

Advanced

Byte, Char Byte, Char Byte Array, Char Array

(SINT 1/2/3
dimensional array)

Boolean

(Bit w/i SINT)

Example SINTTAG SINTARR[0] SINTARR[0]{4} SINTTAG.0

INT, UINT, and WORD
Tag Standard Array Element Array w/wo Offset Bit String
Data Type

Advanced

Word, Short Word, Short Word Array, Short

Array (INT 1/2/3
dimensional array)

Boolean

(Bit w/i INT)

Example INTTAG INTARR[0] INTARR[0]{4} INTTAG.0

DINT, UDINT, and DWORD
Tag Standard Array Element Array w/wo Offset Bit String
Data Type

Advanced

DWord, Long DWord, Long DWord Array, Long
Array

Boolean

(Bit w/i DINT)

Example DINTTAG DINTARR[0] DINTARR[0]{4} DINTTAG.0

LINT, ULINT, and LWORD
Tag Standard Array Element Array w/wo Offset Bit String
Data Type

Advanced

Double, Date Double, Date Double Array

Example LINTTAG LINTARR[0] LINTARR[0]{4}

REAL
Tag Standard Array Element Array w/wo Offset Bit String
Data Type Float Float Float Array

www.kepware.com

23

Allen-Bradley Micro800 Ethernet Driver

Tag Standard Array Element Array w/wo Offset Bit String

Advanced
Example REALTAG REALARR[0] REALARR[0]{4}

LREAL
Tag Standard Array Element Array w/wo Offset Bit String
Data Type

Advanced

Double Double Double Array

Example LREALTAG LREALARR[0] LREALARR[0]{4}

SHORT_STRING
Tag Standard Array Element Array w/wo Offset Bit String
Data Type

Advanced

String String

Example STRINGTAG STRINGARR[0]

See Also: Address Formats

Addressing Structured Data Types
Structures cannot be referenced at the structure level: only the atomic structure members can be
addressed. For more information, refer to the examples below.

Native Tag
MyTimer @ TIMER

Valid Client/Server Tag
Address = MyTimer.ACC
Data type = DWord

Invalid Client/Server Tag
Address = MyTimer
Data type = ??

Ordering of Array Data
One-Dimensional Arrays - array [dim1]
1 dimensional array data is passed to and from the controller in ascending order.

for (dim1 = 0; dim1 < dim1_max; dim1++)

Example: 3 element array
array [0]
array [1]
array [2]

Two-Dimensional Arrays - array [dim1, dim2]
2 dimensional array data is passed to and from the controller in ascending order.

www.kepware.com

24

Allen-Bradley Micro800 Ethernet Driver

for (dim1 = 0; dim1 < dim1_max; dim1++)
for (dim2 = 0; dim2 < dim2_max; dim2++)

Example: 3X3 element array
array [0, 0]
array [0, 1]
array [0, 2]
array [1, 0]
array [1, 1]
array [1, 2]
array [2, 0]
array [2, 1]
array [2, 2]

Three-Dimensional Arrays - array [dim1, dim2, dim3]
3 dimensional array data is passed to and from the controller in ascending order.

for (dim1 = 0; dim1 < dim1_max; dim1++)
for (dim2 = 0; dim2 < dim2_max; dim2++)
for (dim3 = 0; dim3 < dim3_max; dim3++)

Example: 3X3x3 element array
array [0, 0, 0]
array [0, 0, 1]
array [0, 0, 2]
array [0, 1, 0]
array [0, 1, 1]
array [0, 1, 2]
array [0, 2, 0]
array [0, 2, 1]
array [0, 2, 2]
array [1, 0, 0]
array [1, 0, 1]
array [1, 0, 2]
array [1, 1, 0]
array [1, 1, 1]
array [1, 1, 2]
array [1, 2, 0]
array [1, 2, 1]
array [1, 2, 2]
array [2, 0, 0]
array [2, 0, 1]
array [2, 0, 2]
array [2, 1, 0]
array [2, 1, 1]
array [2, 1, 2]
array [2, 2, 0]
array [2, 2, 1]
array [2, 2, 2]

www.kepware.com

25

Allen-Bradley Micro800 Ethernet Driver

Advanced Use Cases
For more information on the advanced use cases for a specific atomic data type, select a link from the list
below.

BOOL
SINT, USINT, and BYTE
INT, UINT, and WORD
DINT, UDINT, and DWORD
LINT, ULINT, and LWORD
REAL
LREAL
SHORT_STRING

BOOL
For more information on the format, refer to Address Formats.

Format Supported Data Types Notes
Array
Element

Boolean The Native Tag must be a 1
dimensional array.

Array w/
Offset

Boolean Array 1. The Native Tag must be a 1
dimensional array.

2. The offset must lay on a 32-
bit boundary.

3. The number of elements
must be a factor of 32.

Array w/o
Offset

Boolean Array 1. The Native Tag must be a 1
dimensional array.

2. The number of elements
must be a factor of 32.

Bit Boolean 1. The Native Tag must be a 1
dimensional array.

2. The range is limited from 0
to 31.

Standard Boolean, Byte, Char, Word, Short, BCD, DWord,
Long, LBCD, Float*

None

String Not supported.

*The Float value equals the face value of the Native Tag in Float form (non-IEEE Floating point number).

Examples
Examples highlighted signify common use cases.

BOOL Atomic Tag - booltag = True

www.kepware.com

26

Allen-Bradley Micro800 Ethernet Driver

Server Tag Address Format Data Type Notes
booltag Standard Boolean Value = True

booltag Standard Byte Value = 1

booltag Standard Word Value = 1

booltag Standard DWord Value = 1

booltag Standard Float Value = 1.0

booltag [3] Array Element Boolean Invalid: Tag is not an array.

booltag [3] Array Element Word Invalid: Tag is not an array.

booltag {1} Array w/o Offset Word Invalid: Not supported.

booltag {1} Array w/o Offset Boolean Invalid: Not supported.

booltag [3] {32} Array w/ Offset Boolean Invalid: Tag is not an array.

booltag . 3 Bit Boolean Invalid: Tag is not an array.

booltag / 1 String String Invalid: Not supported.

booltag / 4 String String Invalid: Not supported.

BOOL Array Tag - bitarraytag = [0,1,0,1]

Server Tag Address Format Data Type Notes
bitarraytag Standard Boolean Invalid: Tag cannot be an array.

bitarraytag Standard Byte Invalid: Tag cannot be an array.

bitarraytag Standard Word Invalid: Tag cannot be an array.

bitarraytag Standard DWord Invalid: Tag cannot be an array.

bitarraytag Standard Float Invalid: Tag cannot be an array.

bitarraytag [3] Array Element Boolean Value = True

bitarraytag [3] Array Element Word Invalid: Bad data type.

bitarraytag {3} Array w/o Offset Word Invalid: Tag cannot be an array.

bitarraytag {1} Array w/o Offset Word Invalid: Tag cannot be an array.

bitarraytag {1} Array w/o Offset Boolean Invalid: Array size must be a factor of 32.

bitarraytag {32} Array w/o Offset Boolean Value = [0,1,0,1,...]

bitarraytag [3] {32} Array w/ Offset Boolean Offset must begin on 32-bit boundary.

bitarraytag[0]{32} Array w/ Offset Boolean Value = [0,1,0,1,...]

bitarraytag[32]{64} Array w/ Offset Boolean Syntax valid. Element is out of range.

bitarraytag . 3 Bit Boolean Value = True

bitarraytag / 1 String String Invalid: Not supported.

bitarraytag / 4 String String Invalid: Not supported.

SINT, USINT, and BYTE
For more information on the format, refer to Address Formats.

Format Supported Data Types Notes
Array
Element

Byte, Char
Word, Short, BCD
DWord, Long, LBCD
Float***

The Native Tag must be an array.

Array w/
Offset

Byte Array, Char Array, Word Array,
Short Array, BCD Array**, DWord

The Native Tag must be an array.

www.kepware.com

27

Allen-Bradley Micro800 Ethernet Driver

Format Supported Data Types Notes
Array, Long Array, LBCD Array**, Float
Array**,***

Array
w/o
Offset

Boolean Array

Byte Array, Char Array, Word Array,
Short Array, BCD Array**, DWord
Array, Long Array, LBCD Array**m
Float Array**,***

1. Use this case to have the bits within an SINT
in array form. This is not an array of SINTs
in Boolean notation.

2. Applies to bit-within-SINT only. Example:
tag_1.0{8}.

3. The .bit plus the array size cannot exceed 8
bits. Example: tag_1.1{8} exceeds an SINT,
tag_1.0{8} does not.

If accessing more than a single element, the
Native Tag must be an array.

Bit Boolean 1. The range is limited from 0 to 7.

2. If the Native Tag is an array, the bit class
reference must be prefixed by an array
element class reference. Example: tag_1
[2,2,3].0.

Standard Boolean*, Byte, Char, Word, Short,
BCD, DWord, Long, LBCD, Float***

None

String String 1. If accessing a single element, the Native
Tag does not need to be an array.

Note: The value of the string is the ASCII
equivalent of the SINT value. Example: SINT
= 65dec = "A".

2. If accessing more than a single element, the
Native Tag must be an array. The value of
the string is the null-terminated ASCII
equivalent of all the SINTs in the string.

1 character in string = 1 SINT.

*Non-zero values are clamped to True.
**Each element of the array corresponds to an element in the SINT array. Arrays are not packed.
***Float value equals theface value of Native Tag in Float form (non-IEEE Floating point number).

Examples
Examples highlighted signify common use cases for SINT, USINT, and BYTE.

SINT, USINT, and BYTE Atomic Tag - sinttag = 122 (decimal)

www.kepware.com

28

Allen-Bradley Micro800 Ethernet Driver

Server Tag
Address Format Data

Type Notes

sinttag Standard Boolean Value = True

sinttag Standard Byte Value = 122

sinttag Standard Word Value = 122

sinttag Standard DWord Value = 122

sinttag Standard Float Value = 122.0

sinttag [3] Array Element Boolean Invalid: Tag is not an array. Also, Boolean is invalid.

sinttag [3] Array Element Byte Invalid: Tag is not an array.

sinttag {3} Array w/o
Offset

Byte Invalid: Tag is not an array.

sinttag {1} Array w/o
Offset

Byte Value = [122]

sinttag {1} Array w/o
Offset

Boolean Invalid: Bad data type.

sinttag [3] {1} Array w/ Offset Byte Invalid: Tag is not an array.

sinttag . 3 Bit Boolean Value = True

sinttag . 0 {8} Array w/o
Offset

Boolean Value = [0,1,0,1,1,1,1,0]
Bit value of 122

sinttag / 1 String String Invalid: Syntax / data type not supported.

sinttag / 4 String String Invalid: Syntax / data type not supported.

SINT, USINT, and BYTE Array Tag - sintarraytag [4,4] = [[83,73,78,84],[5,6,7,8],[9,10,11,12],[13,14,15,16]]

Server Tag Address Format Data
Type Notes

sintarraytag Standard Boolean Invalid: Tag cannot be an array.

sintarraytag Standard Byte Invalid: Tag cannot be an array.

sintarraytag Standard Word Invalid: Tag cannot be an array.

sintarraytag Standard DWord Invalid: Tag cannot be an array.

sintarraytag Standard Float Invalid: Tag cannot be an array.

sintarraytag [3] Array Element Byte Invalid: Server tag missing dimension 2 address.

sintarraytag [1,3] Array Element Boolean Invalid: Boolean not allowed for array elements.

sintarraytag [1,3] Array Element Byte Value = 8

sintarraytag {10} Array w/o
Offset

Byte Value = [83,73,78,84,5,6,7,8,9,10]

sintarraytag {2} {5} Array w/o
Offset

Word Value = [83,73,78,84,5] [6,7,8,9,10]

sintarraytag {1} Array w/o
Offset

Byte Value = 83

sintarraytag {1} Array w/o
Offset

Boolean Invalid: Bad data type.

sintarraytag [1,3] {4} Array w/ Offset Byte Value = [8,9,10,11]

sintarraytag . 3 Bit Boolean Invalid: Tag must reference atomic location.

sintarraytag [1,3] . 3 Bit Boolean Value = 1

sintarraytag [1,3] . 0
{8}

Array w/o
Offset

Boolean Value = [0,0,0,1,0,0,0,0]

www.kepware.com

29

Allen-Bradley Micro800 Ethernet Driver

Server Tag Address Format Data
Type Notes

sintarraytag / 1 String String Invalid: Syntax / data type not supported.

sintarraytag / 4 String String Invalid: Syntax / data type not supported.

INT, UINT, and WORD
For more information on the format, refer to Address Formats.

Format Supported Data Types Notes
Array
Element

Byte, Char**
Word, Short, BCD
DWord, Long, LBCD
Float****

The Native Tag must be an array.

Array w/
Offset

Byte Array, Char Array**
Word Array, Short Array, BCD Array
DWord Array, Long Array, LBCD
Array***
Float Array ***,****

The Native Tag must be an array.

Array
w/o
Offset

Boolean Array

Byte Array, Char Array**, Word
Array, Short Array, BCD Array,
DWord Array, Long Array, LBCD
Array***, Float Array***,****

1. Use this case to have the bits within an INT in
array form. This is not an array of INTs in
Boolean notation.

2. Applies to bit-within-INT only. Example: tag_
1.0{16}.

3. The .bit plus the array size cannot exceed 16
bits. Example: tag_1.1{16} exceeds an INT,
tag_1.0{16} does not.

If accessing more than a single element, the
Native Tag must be an array.

Bit Boolean 1. The range is limited from 0 to 15.

2. If the Native Tag is an array, the bit class
reference must be prefixed by an array
element class reference. Example: tag_1
[2,2,3].0.

Standard Boolean*, Byte, Char**, Word, Short,
BCD, DWord, Long, LBCD, Float****

None.

String String 1. If accessing a single element, the Native Tag
does not need to be an array.

Note: The value of the string is the ASCII
equivalent of the INT value (clamped to 255).
Example: INT = 65dec = "A".

2. If accessing more than a single element, the
Native Tag must be an array. The value of the

www.kepware.com

30

Allen-Bradley Micro800 Ethernet Driver

Format Supported Data Types Notes
string is the null-terminated ASCII equivalent
of all the INTs (clamped to 255) in the string.

1 character in string = 1 INT, clamped to 255.

Note: INT strings are not packed. For
greater efficiency, use SINT strings or the
STRING structure instead.

*Non-zero values are clamped to True.
**Values exceeding 255 are clamped to 255.
*** Each element of the array corresponds to an element in the INT array. Arrays are not packed.
****Float value equals the face value of Native Tag in Float form (non-IEEE Floating point number).

Examples
Examples highlighted signify common use cases for INT, UINT, and WORD.

INT, UINT, and WORD Atomic Tag - inttag = 65534 (decimal)

Server Tag
Address Class Data

Type Notes

inttag Standard Boolean Value = True

inttag Standard Byte Value = 255

inttag Standard Word Value = 65534

inttag Standard DWord Value = 65534

inttag Standard Float Value = 65534.0

inttag [3] Array Element Boolean Invalid: Tag is not an array. Also, Boolean is invalid.

inttag [3] Array Element Word Invalid: Tag is not an array.

inttag {3} Array w/o
Offset

Word Invalid: Tag is not an array.

inttag {1} Array w/o
Offset

Word Value = [65534]

inttag {1} Array w/o
Offset

Boolean Invalid: Bad data type.

inttag [3] {1} Array w/ Offset Word Invalid: Tag is not an array.

inttag . 3 Bit Boolean Value = True

inttag . 0 {16} Array w/o
Offset

Boolean Value = [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
Bit value of 65534

inttag / 1 String String Invalid: Syntax / data type not supported.

inttag / 4 String String Invalid: Syntax / data type not supported.

INT, UINT, and WORD Array Tag - intarraytag [4,4] = [[73,78,84,255],[256,257,258,259],[9,10,11,12],
[13,14,15,16]]

Server Tag Address Class Data
Type Notes

intarraytag Standard Boolean Invalid: Tag cannot be an array.

intarraytag Standard Byte Invalid: Tag cannot be an array.

www.kepware.com

31

Allen-Bradley Micro800 Ethernet Driver

Server Tag Address Class Data
Type Notes

intarraytag Standard Word Invalid: Tag cannot be an array.

intarraytag Standard DWord Invalid: Tag cannot be an array.

intarraytag Standard Float Invalid: Tag cannot be an array.

intarraytag [3] Array Element Word Invalid: Server tag is missing dimension 2 address.

intarraytag [1,3] Array Element Boolean Invalid: Boolean not allowed for array elements.

intarraytag [1,3] Array Element Word Value = 259

intarraytag {10} Array w/o
Offset

Byte Value = [73,78,84,255,255,255,255,255,9,10]

intarraytag {2} {5} Array w/o
Offset

Word Value = [73,78,84,255,256] [257,258,259,9,10]

intarraytag {1} Array w/o
Offset

Word Value = 73

intarraytag {1} Array w/o
Offset

Boolean Invalid: Bad data type.

intarraytag [1,3] {4} Array w/ Offset Word Value = [259,9,10,11]

intarraytag . 3 Bit Boolean Invalid: Tag must reference atomic location.

intarraytag [1,3] . 3 Bit Boolean Value = 0

intarraytag [1,3] . 0
{16}

Array w/o
Offset

Boolean Value = [1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0]
Bit value for 259

intarraytag / 1 String String Invalid: Syntax / data type not supported.

intarraytag / 3 String String Invalid: Syntax / data type not supported.

DINT, UDINT, and DWORD
For more information on the format, refer to Address Formats.

Format Supported Data Types Notes
Array
Element

Byte, Char**, Word, Short,
BCD***, DWord, Long,
LBCD, Float****

The Native Tag must be an array.

Array w/
Offset

Byte Array, Char Array**
Word Array, Short Array,
BCD Array***
DWord Array, Long Array,
LBCD Array
Float Array****

The Native Tag must be an array.

Array
w/o
Offset

Boolean Array 1. Use this case to have the bits within an DINT in array
form. This is not an array of DINTs in Boolean notation.

2. Applies to bit-within-DINT only.

l Example: tag_1.0{32}. The .bit plus the array size cannot
exceed 32 bits.

l Example: tag_1.1{32} exceeds an DINT, tag_1.0{32}
does not.

l If accessing more than a single element, the Native Tag
must be an array.

www.kepware.com

32

Allen-Bradley Micro800 Ethernet Driver

Format Supported Data Types Notes

Byte Array, Char Array**
Word Array, Short Array,
BCD Array***
DWord Array, Long Array,
LBCD Array
Float Array****

Bit Boolean 1. The range is limited from 0 to 31.

2. If Native Tag is an array, bit class reference must be
prefixed by an array element class reference.
Example: tag_1 [2,2,3].0.

Standard Boolean*, Byte, Char**,
Word, Short, BCD***,
DWord, Long, LBCD,
Float****

None.

String String 1. If accessing a single element, the Native Tag does not
need to be an array.

Note: The value of the string is the ASCII equivalent of
the DINT value (clamped to 255). Example: SINT = 65dec
= "A".

2. If accessing more than a single element, the Native Tag
must be an array. The value of the string is the null-
terminated ASCII equivalent of all the DINTs (clamped to
255) in the string.

1 character in string = 1 DINT, clamped to 255.

Note: DINT strings are not packed. For greater
efficiency, use SINT strings or the STRING structure
instead.

*Non-zero values are clamped to True.
**Values exceeding 255 are clamped to 255.
***Values exceeding 65535 are clamped to 65535.
****Float value equals the face value of Native Tag in Float form (non-IEEE Floating point number).

Examples
Examples highlighted signify common use cases for DINT, UDINT, and DWORD.

DINT, UDINT, and DWORD Atomic Tag - dinttag = 70000 (decimal)

Server Tag
Address

Format Data
Type

Notes

dinttag Standard Boolean Value = True

dinttag Standard Byte Value = 255

dinttag Standard Word Value = 65535

www.kepware.com

33

Allen-Bradley Micro800 Ethernet Driver

Server Tag
Address

Format Data
Type

Notes

dinttag Standard DWord Value = 70000

dinttag Standard Float Value = 70000.0

dinttag [3] Array Element Boolean Invalid: Tag is not an array. Also, Boolean is invalid.

dinttag [3] Array Element DWord Invalid: Tag is not an array.

dinttag {3} Array w/o
Offset

DWord Invalid: Tag is not an array.

dinttag {1} Array w/o
Offset

DWord Value = [70000]

dinttag {1} Array w/o
Offset

Boolean Invalid: Bad data type.

dintag [3] {1} Array w/ Offset DWord Invalid: Tag is not an array.

dinttag . 3 Bit Boolean Value = False

dinttag . 0 {32} Array w/o
Offset

Boolean Value = [0,0,0,0,1,1,1,0,1,0,0,0,1,0,0,0,1,0,...0]
Bit value for 70000

dinttag String String Invalid: Syntax / data type not supported.

dinttag String String Invalid: Syntax / data type not supported.

DINT, UDINT, and DWORD Array Tag - dintarraytag [4,4] = [[68,73,78,84],[256,257,258,259],
[9,10,11,12],[13,14,15,16]]

Server Tag Address Format Data
Type Notes

dintarraytag Standard Boolean Invalid: Tag cannot be an array.

dintarraytag Standard Byte Invalid: Tag cannot be an array.

dintarraytag Standard Word Invalid: Tag cannot be an array.

dintarraytag Standard DWord Invalid: Tag cannot be an array.

dintarraytag Standard Float Invalid: Tag cannot be an array.

dintarraytag [3] Array Element DWord Invalid: Server tag missing dimension 2 address.

dintarraytag [1,3] Array Element Boolean Invalid: Boolean not allowed for array elements.

dintarraytag [1,3] Array Element DWord Value = 259

dintarraytag {10} Array w/o
Offset

Byte Value = [68,73,78,84,255,255,255,255,9,10]

dintarraytag {2}{5} Array w/o
Offset

DWord Value = [68,73,78,84,256] [257,258,259,9,10]

dintarraytag {1} Array w/o
Offset

DWord Value = 68

dintarraytag {1} Array w/o
Offset

Boolean Invalid: Bad data type.

dintarraytag [1,3]{4} Array w/ Offset DWord Value = [259,9,10,11]

dintarraytag . 3 Bit Boolean Invalid: Tag must reference atomic location.

dintarraytag [1,3] . 3 Bit Boolean Value = 0

dintarraytag [1,3] .0
{32}

Array w/o
Offset

Boolean Value = [1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0]
Bit value for 259

dintarraytag String String Invalid: Syntax / data type not supported.

dintarraytag String String Invalid: Syntax / data type not supported.

www.kepware.com

34

Allen-Bradley Micro800 Ethernet Driver

LINT, ULINT, and LWORD
For more information on the format, refer to Address Formats.

Format Supported Data
Types Notes

Array
Element

Double*
Date**

The Native Tag must be an array.

Array w/
Offset

Double Array* The Native Tag must be an array.

Array w/o
Offset

Double Array* If accessing more than a single element, the Native Tag must be
an array.

Bit Not supported. Not supported.

Standard Double*
Date**

None.

String Not supported. Not supported.

*Double value equals the face value of Native Tag in Float form (non-IEEE Floating point number).
**Date values are in universal time (UTC), not localized time.

Examples
Examples highlighted signify common use cases for LINT, ULINT, and LWORD.

LINT, ULINT, and LWORD Atomic Tag - linttag = 2007-01-01T16:46:40.000 (date) == 1.16767E+15
(decimal)

Server Tag
Address

Format Data
Type

Notes

linttag Standard Boolean Invalid: Boolean is not supported.

linttag Standard Byte Invalid: Byte is not supported.

linttag Standard Word Invalid: Word is not supported.

linttag Standard Double Value = 1.16767E+15

linttag Standard Date Value = 2007-01-01T16:46:40.000*

linttag [3] Array Element Boolean Invalid: Tag is not an array. Also, Boolean is invalid.

linttag [3] Array Element Double Invalid: Tag is not an array.

linttag {3} Array w/o
Offset

Double Invalid: Tag is not an array.

linttag {1} Array w/o
Offset

Double Value = [1.16767E+15]

linttag {1} Array w/o
Offset

Boolean Invalid: Bad data type.

linttag [3] {1} Array w/ Offset Double Invalid: Tag is not an array.

linttag . 3 Bit Boolean Invalid: Syntax/data type not supported.

linttag / 1 String String Invalid: Syntax/data type not supported.

*Date values are in universal time (UTC), not localized time.

LINT, ULINT, and LWORD Array Tag -
dintarraytag [2,2] = [0, 1.16767E+15],[9.4666E+14, 9.46746E+14] where:

www.kepware.com

35

Allen-Bradley Micro800 Ethernet Driver

1.16767E+15 == 2007-01-01T16:46:40.000 (date)
9.4666E+14 == 1999-12-31T17:06:40.000
9.46746E+14 == 2000-01-1T17:00:00.000
0 == 1970-01-01T00:00:00.000

Server Tag
Address Format Data

Type Notes

lintarraytag Standard Boolean Invalid: Boolean not supported.

lintarraytag Standard Byte Invalid: Byte not supported.

lintarraytag Standard Word Invalid: Word not supported.

lintarraytag Standard Double Invalid: Tag cannot be an array.

lintarraytag Standard Date Invalid: Tag cannot be an array.

lintarraytag [1] Array Element Double Invalid: Server tag missing dimension 2 address.

lintarraytag [1,1] Array Element Boolean Invalid: Boolean not allowed for array elements.

lintarraytag [1,1] Array Element Double Value = 9.46746E+14

lintarraytag [1,1] Array Element Date Value = 2000-01-01T17:00:00.000*

lintarraytag {4} Array w/o
Offset

Double Value = [0, 1.16767E+15, 9.4666E+14, 9.46746E+14]

lintarraytag {2} {2} Array w/o
Offset

Double Value = [0, 1.16767E+15][9.4666E+14,
9.46746E+14]

lintarraytag {4} Array w/o
Offset

Date Invalid: Date array not supported.

lintarraytag {1} Array w/o
Offset

Double Value = 0

lintarraytag {1} Array w/o
Offset

Boolean Invalid: Bad data type.

lintarraytag [0,1] {2} Array w/ Offset Double Value = [1.16767E+15, 9.4666E+14]

lintarraytag . 3 Bit Boolean Invalid: Syntax/data type not supported.

lintarraytag / 1 String String Invalid: Syntax/data type not supported.

*Date values are in universal time (UTC), not localized time.

REAL
For more information on the format, refer to Address Formats.

Format Supported Data Types Notes
Array
Element

Byte, Char**
Word, Short, BCD***
DWord, Long, LBCD
Float****

The Native Tag must be an array.

Array w/
Offset

Byte Array, Char Array**
Word Array, Short Array, BCD
Array***
DWord Array, Long Array, LBCD
Array
Float Array****

The Native Tag must be an array.

Array Boolean Array 1. Use this case to have the bits within an REAL in

www.kepware.com

36

Allen-Bradley Micro800 Ethernet Driver

Format Supported Data Types Notes
w/o
Offset

Byte Array, Char Array**, Word
Array, Short Array, BCD Array***,
DWord Array, Long Array, LBCD
Array, Float Array****

array form. This is not an array of REALs in
Boolean notation.

2. Applies to bit-within-REAL only. Example: tag_
1.0{32}.

3. The .bit plus the array size cannot exceed 32
bits. Example: tag_1.1{32} exceeds an REAL,
tag_1.0{32} does not.

If accessing more than a single element, the
Native Tag must be an array.

Bit Boolean 1. The range is limited from 0 to 31.

2. If the Native Tag is an array, the bit class
reference must be prefixed by an array
element class reference. Example: tag_1
[2,2,3].0.

Note: Float is casted to a DWord to allow
referencing of bits.

Standard Boolean*, Byte, Char**, Word,
Short, BCD***, DWord, Long, LBCD,
Float****

None.

String String 1. If accessing a single element, the Native Tag
does not need to be an array.

Note: The value of the string is the ASCII
equivalent of the REAL value (clamped to 255).
Example: SINT = 65dec = "A".

2. If accessing more than a single element, the
Native Tag must be an array. The value of the
string is the null-terminated ASCII equivalent
of all the REALs (clamped to 255) in the string.

1 character in string = 1 REAL, clamped to 255.

REAL strings are not packed. For greater
efficiency, use SINT strings or the STRING
structure instead.

*Non-zero values are clamped to True.
**Values exceeding 255 are clamped to 255.
***Values exceeding 65535 are clamped to 65535.
****Float value is a valid IEEE single precision Floating point number.

www.kepware.com

37

Allen-Bradley Micro800 Ethernet Driver

Examples
Examples highlighted signify common use cases.

REAL Atomic Tag - realtag = 512.5 (decimal)

Server Tag
Address Format Data

Type Notes

realtag Standard Boolean Value = True

realtag Standard Byte Value = 255

realtag Standard Word Value = 512

realtag Standard DWord Value = 512

realtag Standard Float Value = 512.5

realtag [3] Array Element Boolean Invalid: Tag is not an array. Also, Boolean is invalid.

realtag [3] Array Element DWord Invalid: Tag is not an array.

realtag {3} Array w/o
Offset

DWord Invalid: Tag is not an array.

realtag {1} Array w/o
Offset

Float Value = [512.5]

realtag {1} Array w/o
Offset

Boolean Invalid: Bad data type.

realtag [3] {1} Array w/ Offset Float Invalid: Tag is not an array.

realtag . 3 Bit Boolean Value = True

realtag . 0 {32} Array w/o
Offset

Boolean Value = [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,...0]
Bit value for 512

realtag String String Invalid: Syntax / data type not supported.

realtag String String Invalid: Syntax / data type not supported.

REAL Array Tag - realarraytag [4,4] = [[82.1,69.2,65.3,76.4],[256.5,257.6,258.7,259.8],[9.0,10.0,11.0,12.0],
[13.0,14.0,15.0,16.0]]

Server Tag Address Format Data
Type Notes

realarraytag Standard Boolean Invalid: Tag cannot be an array.

realarraytag Standard Byte Invalid: Tag cannot be an array.

realarraytag Standard Word Invalid: Tag cannot be an array.

realarraytag Standard DWord Invalid: Tag cannot be an array.

realarraytag Standard Float Invalid: Tag cannot be an array.

realarraytag [3] Array
Element

Float Invalid: Server tag missing dimension 2 address.

realarraytag [1,3] Array
Element

Boolean Invalid: Boolean not allowed for array elements.

realarraytag [1,3] Array
Element

Float Value = 259.8

realarraytag {10} Array w/o
Offset

Byte Value = [82,69,65,76,255,255,255,255,9,10]

realarraytag {2} {5} Array w/o
Offset

Float Value = [82.1,69.2,65.3,76.4,256.5]
[257.6,258.7,259.8,9,10]

realarraytag {1} Array w/o
Offset

Float Value = 82.1

www.kepware.com

38

Allen-Bradley Micro800 Ethernet Driver

Server Tag Address Format Data
Type Notes

realarraytag {1} Array w/o
Offset

Boolean Invalid: Bad data type.

realarraytag [1,3] {4} Array w/
Offset

Float Value = [259.8,9.0,10.0,11.0]

realarraytag . 3 Bit Boolean Invalid: Tag must reference atomic location.

realarraytag [1,3] . 3 Bit Boolean Value = 0

realarraytag [1,3] . 0
{32}

Array w/o
Offset

Boolean Value = [1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0]
Bit value for 259

realarraytag String String Invalid: Syntax / data type not supported.

realarraytag String String Invalid: Syntax / data type not supported.

LREAL
For more information on the format, refer to Address Formats.

Format Supported Data
Types Notes

Array
Element

Double* The Native Tag must be an array.

Array w/
Offset

Double Array The Native Tag must be an array.

Array w/o
Offset

Double Array If accessing more than a single element, the Native Tag must be
an array.

Bit Boolean Invalid: Syntax/Data type not supported.

Standard Double* None.

String String Invalid: Syntax/Data type not supported.

*Double value is a valid IEEE double precision Floating point number.

Examples
Examples highlighted signify common use cases.

LREAL Atomic Tag – lrealtag = 512.5 (decimal)

Server Tag
Address Format Data

Type Notes

lrealtag Standard Boolean Invalid: Data type not supported.

lrealtag Standard Byte Invalid: Data type not supported.

lrealtag Standard Word Invalid: Data type not supported.

lrealtag Standard DWord Invalid: Data type not supported.

lrealtag Standard Double Value = 512.5

lrealtag [3] Array Element Boolean Invalid: Tag is not an array, and Boolean is invalid.

lrealtag [3] Array Element DWord Invalid: Tag is not an array.

lrealtag {3} Array w/o
Offset

DWord Invalid: Tag is not an array.

lrealtag {1} Array w/o
Offset

Double Value = [512.5]

www.kepware.com

39

Allen-Bradley Micro800 Ethernet Driver

Server Tag
Address Format Data

Type Notes

lrealtag {1} Array w/o
Offset

Boolean Invalid: Bad data type.

lrealtag [3] {1} Array w/ Offset Float Invalid: Tag is not an array.

lrealtag . 3 Bit Boolean Invalid: Data type not supported.

lrealtag . 0 {32} Array w/o
Offset

Boolean Invalid: Data type not supported.

lrealtag String String Invalid: Syntax / data type not supported.

lrealtag String String Invalid: Syntax / data type not supported.

LREAL Array Tag - realarraytag [4,4] = [[82.1,69.2,65.3,76.4],[256.5,257.6,258.7,259.8],[9.0,10.0,11.0,12.0],
[13.0,14.0,15.0,16.0]]

Server Tag Address Format Data
Type Notes

lrealarraytag Standard Boolean Invalid: Tag cannot be an array.

lrealarraytag Standard Byte Invalid: Tag cannot be an array.

lrealarraytag Standard Word Invalid: Tag cannot be an array.

lrealarraytag Standard DWord Invalid: Tag cannot be an array.

lrealarraytag Standard Double Invalid: Tag cannot be an array.

lrealarraytag [3] Array
Element

Double Invalid: Server tag missing dimension 2 address.

lrealarraytag [1,3] Array
Element

Boolean Invalid: Boolean not allowed for array elements.

lrealarraytag [1,3] Array
Element

Double Value = 259.8

lrealarraytag {10} Array w/o
Offset

Byte Invalid: Data type not supported.

lrealarraytag {2} {5} Array w/o
Offset

Double Value = [82.1,69.2,65.3,76.4,256.5]
[257.6,258.7,259.8,9,10]

lrealarraytag {1} Array w/o
Offset

Double Value = 82.1

lrealarraytag {1} Array w/o
Offset

Boolean Invalid: Bad data type.

lrealarraytag [1,3] {4} Array w/
Offset

Double Value = [259.8,9.0,10.0,11.0]

lrealarraytag . 3 Bit Boolean Invalid: Tag must reference atomic location.

lrealarraytag [1,3] . 3 Bit Boolean Value = 0

lrealarraytag [1,3] . 0
{32}

Array w/o
Offset

Boolean Invalid: Syntax/Data type not supported.

lrealarraytag String String Invalid: Syntax / data type not supported.

lrealarraytag String String Invalid: Syntax / data type not supported.

SHORT_STRING
For more information on the format, refer to Address Formats.

www.kepware.com

40

Allen-Bradley Micro800 Ethernet Driver

Format
Supported
Data
Types

Notes

Array
Element

String The Native Tag must be an array.

Array w/
Offset

N/A N/A

Array
w/o
Offset

N/A N/A

Bit N/A N/A

Standard String The length of the string is based on the length encoding contained within the
Native Tag. If the string contains non-printable characters, these are included in
the string.

String N/A The length of the string needs to be specified in the tag address.

Examples
Examples highlighted signify common use cases.

SHORT_STRING Atomic Tag – stringtag = "mystring"

Server Tag
Address Format Data

Type Notes

stringtag Standard String Value = mystring.

stringtag Standard Byte Invalid: Byte is not supported.

stringtag Standard Word Invalid: Word is not supported.

stringtag [3] Array Element Boolean Invalid: Tag is not an array, and Boolean is invalid.

stringtag [3] Array Element Double Invalid: Tag is not an array.

stringtag {3} Array w/o
Offset

Double Invalid: Tag is not an array.

stringtag {1} Array w/o
Offset

Double Value = [1.16767E+15].

stringtag {1} Array w/o
Offset

Boolean Invalid: Bad data type.

lintag [3] {1} Array w/ Offset Double Invalid: Tag is not an array.

stringtag . 3 Bit Boolean Invalid: Syntax/data type not supported.

stringtag / 1 String String Invalid: Syntax/data type not supported.

SHORT_STRING Array Tag – stringarraytag[2,2] = [one,two].[three,four]

Server Tag Address Format Data
Type Notes

stringarraytag Standard Boolean Invalid: Boolean not supported.

stringarraytag Standard Byte Invalid: Byte not supported.

stringarraytag Standard Word Invalid: Word not supported.

stringarraytag Standard Double Invalid: Tag cannot be an array.

stringarraytag Standard Date Invalid: Tag cannot be an array.

stringarraytag [1] Array Element Double Invalid: Server tag missing dimension 2 address.

www.kepware.com

41

Allen-Bradley Micro800 Ethernet Driver

Server Tag Address Format Data
Type Notes

stringarraytag [1,1] Array Element Boolean Invalid: Boolean not allowed for array elements.

stringarraytag [1,1] Array Element String Value: "four"

stringarraytag {4} Array w/o
Offset

String Invalid: String array not supported.

stringarraytag {2} {2} Array w/o
Offset

String Invalid: String array not supported.

stringarraytag {1} Array w/o
Offset

Boolean Invalid: Bad data type.

stringarraytag [0, 1] {2} Array w/ Offset String Value: "three"

stringarraytag . 3 Bit Boolean Invalid: Syntax/data type not supported.

stringarraytag / 1 String String Invalid: Syntax not supported.

www.kepware.com

42

Allen-Bradley Micro800 Ethernet Driver

Error Codes
The following sections define error codes that may be encountered in the server's Event Log. For more
information on a specific error code type, select a link from the list below.

Encapsulation Protocol Error Codes
CIP Error Codes

Encapsulation Protocol Error Codes
The following error codes are in hexadecimal.

Error Code Description
0001 Command not handled.

0002 Memory not available for command.

0003 Poorly formed or incomplete data.

0064 Invalid Session ID.

0065 Invalid length in header.

0069 Requested protocol version not supported.

0070 Invalid Target ID.

CIP Error Codes
The following error codes are in hexadecimal.

Error Code Description
0001 Connection Failure.*

0002 Insufficient resources.

0003 Value invalid.

0004 IOI could not be deciphered or tag does not exist.

0005 Unknown destination.

0006 Data requested would not fit in response packet.

0007 Loss of connection.

0008 Unsupported service.

0009 Error in data segment or invalid attribute value.

000A Attribute list error.

000B State already exists.

000C Object Model conflict.

000D Object already exists.

000E Attribute not configurable.

000F Permission denied.

0010 Device state conflict.

0011 Reply will not fit.

0012 Fragment primitive.

0013 Insufficient command data/parameters specified to execute service.

0014 Attribute not supported.

0015 Too much data specified.

www.kepware.com

43

Allen-Bradley Micro800 Ethernet Driver

Error Code Description
001A Bridge request too large.

001B Bridge response too large.

001C Attribute list shortage.

001D Invalid attribute list.

001E Embedded service error.

001F Failure during connection.**

0022 Invalid reply received.

0025 Key segment error.

0026 Number of IOI words specified does not match IOI word count.

0027 Unexpected attribute in list.

* See Also: 0x0001 Extended Error Codes
** See Also: 0x001F Extended Error Codes

Allen-Bradley Specific Error Codes
Error Code (hex) Description
00FF General Error*

* See Also: 0x00FF Extended Error Codes

For unlisted error codes, refer to the Rockwell Automation documentation.

0x0001 Extended Error Codes
The following error codes are in hexadecimal.

Error Code Description
0100 Connection in use.

0103 Transport not supported.

0106 Ownership conflict.

0107 Connection not found.

0108 Invalid connection type.

0109 Invalid connection size.

0110 Module not configured.

0111 EPR not supported.

0114 Wrong module.

0115 Wrong device type.

0116 Wrong revision.

0118 Invalid configuration format.

011A Application out of connections.

0203 Connection timeout.

0204 Unconnected message timeout.

0205 Unconnected send parameter error.

0206 Message too large.

0301 No buffer memory.

www.kepware.com

44

Allen-Bradley Micro800 Ethernet Driver

Error Code Description
0302 Bandwidth not available.

0303 No screeners available.

0305 Signature match.

0311 Port not available.

0312 Link address not available.

0315 Invalid segment type.

0317 Connection not scheduled.

0318 Link address to self is invalid.

For unlisted error codes, refer to the Rockwell Automation documentation.

0x001F Extended Error Codes
The following error codes are in hexadecimal.

Error Code Description
0203 Connection timed out.

For unlisted error codes, refer to the Rockwell Automation documentation.

0x00FF Extended Error Codes
The following error codes are in hexadecimal.

Error Code Description
2104 Address out of range.

2105 Attempt to access beyond end of data object.

2106 Data in use.

2107 Data type is invalid or not supported.

For unlisted error codes, refer to the Rockwell Automation documentation.

www.kepware.com

45

Allen-Bradley Micro800 Ethernet Driver

Event LogMessages
The following information concerns messages posted to the Event Log pane in the main user interface.
Consult the server help on filtering and sorting the Event Log detail view. Server help contains many
common messages, so should also be searched. Generally, the type of message (informational, warning)
and troubleshooting information is provided whenever possible.

Controller not supported. | Vendor ID = <vendor>, Product type = <type>,
Product code = <code>, Product name = '<product>'.
Error Type:
Warning

Frame received from device contains errors.
Error Type:
Warning

Possible Cause:

1. The packets are misaligned (due to connection/disconnection between the PC and device).

2. There is bad cabling connecting the device causing noise.

3. An incorrect frame size was received.

4. There is a TNS mismatch.

5. An invalid response command was returned from the device.

Possible Solution:
While the driver can recover from this error without intervention, there may be an issues with the cabling or
the device itself that should be corrected.

Write request for tag failed due to a framing error. | Tag address =
'<address>'.
Error Type:
Warning

Possible Cause:

1. A write request for the specified tag failed after so many retries due to an incorrect request service
code.

2. A write request for the specified tag failed after so many retries because the number of bytes
received was more or fewer than expected.

Possible Solution:
There may be an issue with the cabling or the device itself. Increase the retry attempts to give the driver
more opportunities to recover from this error.

www.kepware.com

46

Allen-Bradley Micro800 Ethernet Driver

Read request for tag failed due to a framing error. | Tag address =
'<address>'.
Error Type:
Warning

Possible Cause:

1. A read request for the specified tag failed after so many retries due to an incorrect request service
code.

2. A read request for the specified tag failed after so many retries because the number of bytes
received was more or fewer than expected.

Possible Solution:
There may be an issue with the cabling or the device itself. Increase the retry attempts to give the driver
more opportunities to recover from this error.

Block read request failed due to a framing error. | Block start = '<address>',
Block size = <number> (elements).
Error Type:
Warning

Possible Cause:

1. A read request for the specified tag failed after so many retries due to an incorrect request service
code.

2. A read request for the specified tag failed after so many retries because the number of bytes
received was more or fewer than expected.

Possible Solution:
There may be an issue with the cabling or the device itself. Increase the retry attempts to give the driver
more opportunities to recover from this error.

Unable to write to tag on device. | Tag address = '<address>', CIP error =
<code>, Extended error = <code>.
Error Type:
Warning

Possible Cause:
The device returned an error within the CIP portion of the packet during a write request for the specified tag.

Possible Solution:
The solution depends on the error code(s) returned. Consult the CIP and Extended code definitions.

Unable to read tag from device. | Tag address = '<address>', CIP error =
<code>, Extended error = <code>.
Error Type:
Warning

www.kepware.com

47

Allen-Bradley Micro800 Ethernet Driver

Possible Cause:
The device returned an error within the CIP portion of the packet during a read request for the specified tag.

Possible Solution:
The solution depends on the error code(s) returned. Consult the CIP and Extended code definitions.

Unable to read block from device. | Block start = '<address>', Block size =
<number>, CIP error = <code>, Extended error = <code>.
Error Type:
Warning

Possible Cause:
The device returned an error within the CIP portion of the packet during a block read request for the
specified tag.

Possible Solution:
The solution depends on the error code(s) returned. Consult the CIP and Extended code definitions.

Unable to write to tag on device. Controller tag data type unknown. | Tag
address = '<address>', Unknown data type = <type>.
Error Type:
Warning

Possible Cause:
A request for the specified tag failed because the tag data type is not supported.

Possible Solution:

1. Change the tag data type to one that is supported. In response to this error, the elements of the block
are deactivated and not processed again.

2. Contact Technical Support.

Unable to read tag from device. Controller tag data type unknown. Tag
deactivated. | Tag address = '<address>', Unknown data type = <type>.
Error Type:
Warning

Possible Cause:
A request for the specified tag failed because the tag data type is not supported.

Possible Solution:

1. Change the tag data type to one that is supported. In response to this error, the elements of the block
are deactivated and not processed again.

2. Contact Technical Support.

www.kepware.com

48

Allen-Bradley Micro800 Ethernet Driver

Unable to read block from device. Controller tag data type unknown. Block
deactivated. | Block start = '<address>', Block size = <number>, Unknown
data type = <type>.
Error Type:
Warning

Possible Cause:
A request for the specified tag failed because the tag data type is not supported.

Possible Solution:

1. Change the tag data type to one that is supported. In response to this error, the elements of the block
are deactivated and not processed again.

2. Contact Technical Support.

Unable to write to tag on device. Data type not supported. | Tag address =
'<address>', Unsupported data type = '<type>'.
Error Type:
Warning

Possible Cause:
A request for the specified tag failed because the tag data type is not supported.

Possible Solution:
Change the tag data type to one that is supported. For example, data type Short is illegal for a BOOL array
Native Tag. Changing the data type to Boolean remedies the problem.

Ã See Also:
Addressing Atomic Data Types

Unable to read tag from device. Data type not supported. Tag deactivated. |
Tag address = '<address>', Unsupported data type = '<type>'.
Error Type:
Warning

Possible Cause:
A request for the specified tag failed because the tag data type is not supported.

Possible Solution:
Change the tag data type to one that is supported. In response to this error, the elements of the block are
deactivated and not processed again.

Ã See Also:
Addressing Atomic Data Types

www.kepware.com

49

Allen-Bradley Micro800 Ethernet Driver

Unable to read block from device. Data type not supported. Block
deactivated. | Block start = '<address>', Block size = <number> (elements),
Unsupported data type = '<type>'.
Error Type:
Warning

Possible Cause:
A request for the specified tag failed because the tag data type is not supported.

Possible Solution:
Change the tag data type to one that is supported. In response to this error, the elements of the block are
deactivated and not processed again.

Ã See Also:
Addressing Atomic Data Types

Unable to write to tag. Data type is illegal for tag. | Tag address = '<address>',
Illegal data type = '<type>'.
Error Type:
Warning

Possible Cause:
The write request for the specified tag failed because the client tag data type is illegal for the given Native
Tag.

Possible Solution:
Change the tag data type to one that is supported. For example, data type Short is illegal for a BOOL array
Native Tag. Changing the data type to Boolean would remedy this problem.

Ã See Also:
Addressing Atomic Data Types

Unable to read tag from device. Data type is illegal for this tag. Tag
deactivated. | Tag address = '<address>', Illegal data type = '<type>'.
Error Type:
Warning

Possible Cause:
The read request for the specified tag failed because the client tag data type is illegal for the given Native
Tag.

Possible Solution:
Change the tag data type to one that is supported. For example, data type Short is illegal for a BOOL array
Native Tag. Changing the data type to Boolean would remedy this problem. In response to this error, the
elements of the block are deactivated and not processed again.

Ã See Also:
Addressing Atomic Data Types

www.kepware.com

50

Allen-Bradley Micro800 Ethernet Driver

Unable to read block from device. Data type is illegal for this block. Block
deactivated. | Block start = '<address>', Block size = <number> (elements),
Illegal data type = '<type>'.
Error Type:
Warning

Possible Cause:
A read request for the specified tag failed because the client tag data type is illegal for the given Native Tag.

Possible Solution:
Change the tag data type to one that is supported. For example, data type Short is illegal for a BOOL array
Native Tag. Changing the data type to Boolean would remedy this problem. In response to this error, the
elements of the block are deactivated and not processed again.

Ã See Also:
Addressing Atomic Data Types

Unable to write to tag on device. Tag does not support multi-element arrays. |
Tag address = '<address>'.
Error Type:
Warning

Possible Cause:
A read request for the specified tag failed because the driver does not support multi-element array access
to the given Native Tag.

Possible Solution:
Change the tag data type or address to one that is supported. In response to this error, the tag is
deactivated and not processed again.

Ã See Also:
Addressing Atomic Data Types

Unable to read tag from device. Tag does not support multi-element arrays.
Tag deactivated. | Tag address = '<address>'.
Error Type:
Warning

Possible Cause:
A read request for the specified tag failed because the driver does not support multi-element array access
to the given Native Tag.

Possible Solution:
Change the tag data type or address to one that is supported. In response to this error, the tag is
deactivated and not processed again.

Ã See Also:
Addressing Atomic Data Types

www.kepware.com

51

Allen-Bradley Micro800 Ethernet Driver

Unable to read block from device. Block does not support multi-element
arrays. Block deactivated. | Block start = '<address>', Block size = <number>
(elements).
Error Type:
Warning

Possible Cause:
A read request for the specified tag failed because the driver does not support multi-element array access
to the given tag.

Possible Solution:
Change the data type or address for tags within this block to one that is supported. In response to this error,
the elements of the block are deactivated and not processed again.

Ã See Also:
Addressing Atomic Data Types

Unable to write to tag on device. | Tag address = '<address>'.
Error Type:
Warning

Possible Cause:

1. The connection between the device and the host PC is broken.

2. The communication parameters for the connection are incorrect.

3. The named device may have been assigned an incorrect address.

Possible Solution:

1. Verify the cabling between the PC and the device.

2. Verify that the correct port has been specified for the named device.

3. Verify that the address given to the named device matches that of the actual device.

Unable to read tag from device. Tag deactivated. | Tag address =
'<address>'.
Error Type:
Warning

Possible Cause:

1. The connection between the device and the host PC is broken.

2. The communication parameters for the connection are incorrect.

3. The named device may have been assigned an incorrect address.

Possible Solution:

www.kepware.com

52

Allen-Bradley Micro800 Ethernet Driver

1. Verify the cabling between the PC and the device.

2. Verify that the correct port has been specified for the named device.

3. Verify that the address given to the named device matches that of the actual device.

Ã Note:
In response to this error, the tag is deactivated and not processed again.

Unable to read block from device. Block deactivated. | Block start =
'<address>', Block size = <number>.
Error Type:
Warning

Possible Cause:

1. The connection between the device and the host PC is broken.

2. The communication parameters for the connection are incorrect.

3. The named device may have been assigned an incorrect address.

Possible Solution:

1. Verify the cabling between the PC and the device.

2. Verify that the correct port has been specified for the named device.

3. Verify that the address given to the named device matches that of the actual device.

Ã Note:
In response to this error, the block is deactivated and not processed again.

Device responded with CIP error. | Status code = <code>, Extended status
code = <code>.
Error Type:
Warning

Possible Cause:
The device returned an error within the CIP portion of the packet during a request. All reads and writes
within the request failed.

Possible Solution:
The solution depends on the error code(s) returned. Consult the CIP codes.

Ã See Also:
CIP Error Codes

Memory could not be allocated for tag. | Tag address = '<address>'.
Error Type:

www.kepware.com

53

Allen-Bradley Micro800 Ethernet Driver

Warning

Possible Cause:
The resources needed to build a tag could not be allocated. The tag is not added to the project.

Possible Solution:
Close any unused applications and/or increase the amount of virtual memory and try again.

Device responded with encapsulation error.
Error Type:
Warning

Possible Cause:
The device returned an error within the encapsulation portion of the packet during a request. All reads and
writes within the request failed.

Possible Solution:

1. The driver attempts to recover from this error.

2. The solution depends on the error code(s) returned by the device.

Ã See Also:

1. Encapsulation Protocol Error Codes

2. Error Matrix

Unable to read tag from device. Internal memory is invalid. | Tag address =
'<address>'.
Error Type:
Warning

Unable to read tag from device. Data type is illegal for tag. | Tag address =
'<address>', Illegal data type = '<type>'.
Error Type:
Warning

Possible Cause:
A read request for the specified tag failed because the client tag data type is illegal for the given Native Tag.

Possible Solution:
Change the tag data type to one that is supported. For example, data type Short is illegal for a BOOL array
Native Tag. Changing the data type to Boolean would remedy this problem. In response to this error, the tag
is deactivated and not processed again.

Ã See Also:
Addressing Atomic Data Types

www.kepware.com

54

Allen-Bradley Micro800 Ethernet Driver

Unable to read tag from device. Internal memory is invalid. Tag deactivated.
| Tag address = '<address>'.
Error Type:
Warning

Unable to read block from device. Internal memory is invalid. Block
deactivated. | Block start = '<address>', Block size = <number> (elements).
Error Type:
Warning

Unable to write to address on device. Internal memory is invalid. | Tag
address = '<address>'.
Error Type:
Warning

Unable to read block from device. Block deactivated. | Block start =
'<address>', Block size = <number>, CIP error = <code>, Extended error =
<code>.
Error Type:
Warning

Possible Cause:
The device returned an error within the CIP portion of the packet during a read request for the specified tag.

Possible Solution:
The solution depends on the error code(s) returned.

Ã See Also:
CIP Error Codes

Device identity details. | IP = '<address>', Vendor ID = <vendor>, Product type
= <type>, Product code = <code>, Revision = '<revision>', Product name =
'<product>', Product S/N = <serial number>.
Error Type:
Informational

Device does not support Fragmented Read/Write Services. Automatically
falling back to Non-Fragmented Services.
Error Type:
Informational

www.kepware.com

55

Allen-Bradley Micro800 Ethernet Driver

Glossary
Native Tag-Based Addressing

Term Definition
Array
Element

Element within a native Array Tag. For client/server access, the element must be an
atomic. For example, ARRAYTAG [0].

Array with
Offset

Client/Server array tag whose address has a native Array Element specified. For example,
ARRAYTAG [0] {5}.

Array w/o
Offset

Client/Server array tag whose address has no native Array Element specified. For
example, ARRAYTAG {5}.

Atomic Data
Type

A pre-defined, non-structured Native data type. For example, SINT, DINT.

Atomic Tag A Native Tag defined with an Atomic Data Type.

Client An HMI/SCADA or data bridging software package utilizing OPC, DDE, or proprietary
client/server protocol to interface with the server.

Client/Server
Data Type

Data type for tags defined statically in the server or dynamically in a client. The data types
supported in the client depends on the client in use.*

Client/Server
Tag

Tag defined statically in the server or dynamically in a client. These tags are different
entities than Native Tags. A Native Tag name becomes a Client/Server Tag address when
referencing such Native Tag.

Client/Server
Array

Row x column data presentation format supported by the server and by some clients. Not
all clients support arrays.

CCW Connected Components Workbench.

Native Data
Type

A data type defined in CCW for Micro800 controllers.

Native Tag A tag defined in CCW for Micro800 controllers.

Native Array
Data Type

A multi-dimensional array (1, 2 or 3 dimensions possible) supported in CCW for Micro800
controllers. All atomic data types support Native Arrays. Not all structured data types
support Native Arrays.

Array Tag A Native Tag defined with a native Array Data Type.

Pre-Defined
Data Type

A Native data type supported and pre-defined by CCW for Micro800 controllers.*

User-Defined
Data Type

A Native data type supported by CCW and defined by the user for Micro800 controllers.*

Server The OPC/DDE/proprietary server utilizing this Allen-Bradley Micro800 Ethernet Driver.

Structured
Data Type

A pre-defined or user-defined data type, consisting of members whose data types are
atomic or structure in nature.

Structure
Tag

A Native Tag defined with a Structured Data Type.

*The data types supported in the server are listed in Data Types Description.

www.kepware.com

56

Allen-Bradley Micro800 Ethernet Driver

Index

A

Address Descriptions 19

Address Formats 20

Addressing Atomic Data Types 23

Addressing Structured Data Types 24

Advanced Channel Properties 9

Advanced Use Cases 26

Array Block Size 16

B

BCD 19

Block read request failed due to a framing error. | Block start = '<address>', Block size = <number>
(elements). 47

BOOL 26

Boolean 19

Byte 19

C

Channel Assignment 11

Channel Properties - Ethernet Communications 8

Channel Properties - General 7

Channel Properties - Write Optimizations 8

Char 19

CIP Error Codes 43

Communication Protocol 7

Communication Serialization 12

Communications Parameters 15

Communications Timeouts 14

Connect Timeout 14

Controller not supported. | Vendor ID = <vendor>, Product type = <type>, Product code = <code>, Product
name = '<product>'. 46

www.kepware.com

57

Allen-Bradley Micro800 Ethernet Driver

D

Data Collection 11

Data Types Description 19

Date 19

Demote on Failure 15

Demotion Period 15

Description 11

Device does not support Fragmented Read/Write Services. Automatically falling back to Non-Fragmented
Services. 55

Device identity details. | IP = '<address>', Vendor ID = <vendor>, Product type = <type>, Product code =
<code>, Revision = '<revision>', Product name = '<product>', Product S/N = <serial number>. 55

Device Properties - Auto-Demotion 15

Device Properties - General 10

Device responded with CIP error. | Status code = <code>, Extended status code = <code>. 53

Device responded with encapsulation error. 54

Diagnostics 8

DINT, UDINT, and DWORD 32

Discard Requests when Demoted 15

Do Not Scan, Demand Poll Only 13

Double 19

Driver 8, 11

Duty Cycle 9

DWord 19

E

Encapsulation Protocol Error Codes 43

Error Codes 43

Event Log Messages 46

Extended Error Codes 0x0001 44

Extended Error Codes 0x001F 45

Extended Error Codes 0x00FF 45

F

Float 19

Frame received from device contains errors. 46

www.kepware.com

58

Allen-Bradley Micro800 Ethernet Driver

G

Global Settings 12

Global Variables 22

Glossary 56

H

Help Contents 5

I

ID 11

IEEE-754 floating point 10

Inactivity Watchdog 16

Initial Updates from Cache 14

INT, UINT, and WORD 30

Inter-Request Delay 14

Invalid 24

L

LBCD 19

LINT, ULINT, and LWORD 35

Load Balanced 12

Local Variables 22

Long 19

LREAL 39

M

Memory could not be allocated for tag. | Tag address = '<address>'. 53

Model 11

N

Name 10

Native Tag 24

www.kepware.com

59

Allen-Bradley Micro800 Ethernet Driver

Network Adapter 8

Network Mode 12

Non-Normalized Float Handling 10

O

Optimization Method 9

Optimizing Your Application 17

Optimizing Your Communications 17

Options 16

Ordering of Array Data 24

Overview 6

P

Performance Optimizations 17

Priority 12

Project 16

R

Read request for tag failed due to a framing error. | Tag address = '<address>'. 47

REAL 36

Redundancy 16

Request All Data at Scan Rate 13

Request Data No Faster than Scan Rate 13

Request Timeout 14

Respect Client-Specified Scan Rate 13

Respect Tag-Specified Scan Rate 14

Retry Attempts 14

S

Scan Mode 13

Setup 7

Short 19

SHORT_STRING 40

Simulated 11

www.kepware.com

60

Allen-Bradley Micro800 Ethernet Driver

SINT, USINT, and BYTE 27

String 19

Structure Tag Addressing 22

Structured Data 24

Structured Variables 22

Supported Devices 7

T

Tag Scope 22

TCP/IP - Port 16

Timeouts to Demote 15

Transactions 12

U

Unable to read block from device. | Block start = '<address>', Block size = <number>, CIP error = <code>,
Extended error = <code>. 48

Unable to read block from device. Block deactivated. | Block start = '<address>', Block size = <number>,
CIP error = <code>, Extended error = <code>. 55

Unable to read block from device. Block deactivated. | Block start = '<address>', Block size =
<number>. 53

Unable to read block from device. Block does not support multi-element arrays. Block deactivated. |
Block start = '<address>', Block size = <number> (elements). 52

Unable to read block from device. Controller tag data type unknown. Block deactivated. | Block start =
'<address>', Block size = <number>, Unknown data type = <type>. 49

Unable to read block from device. Data type is illegal for this block. Block deactivated. | Block start =
'<address>', Block size = <number> (elements), Illegal data type = '<type>'. 51

Unable to read block from device. Data type not supported. Block deactivated. | Block start =
'<address>', Block size = <number> (elements), Unsupported data type = '<type>'. 50

Unable to read block from device. Internal memory is invalid. Block deactivated. | Block start =
'<address>', Block size = <number> (elements). 55

Unable to read tag from device. | Tag address = '<address>', CIP error = <code>, Extended error =
<code>. 47

Unable to read tag from device. Controller tag data type unknown. Tag deactivated. | Tag address =
'<address>', Unknown data type = <type>. 48

Unable to read tag from device. Data type is illegal for tag. | Tag address = '<address>', Illegal data type
= '<type>'. 54

Unable to read tag from device. Data type is illegal for this tag. Tag deactivated. | Tag address =
'<address>', Illegal data type = '<type>'. 50

Unable to read tag from device. Data type not supported. Tag deactivated. | Tag address = '<address>',

www.kepware.com

61

Allen-Bradley Micro800 Ethernet Driver

Unsupported data type = '<type>'. 49

Unable to read tag from device. Internal memory is invalid. | Tag address = '<address>'. 54

Unable to read tag from device. Internal memory is invalid. Tag deactivated. | Tag address =
'<address>'. 55

Unable to read tag from device. Tag deactivated. | Tag address = '<address>'. 52

Unable to read tag from device. Tag does not support multi-element arrays. Tag deactivated. | Tag
address = '<address>'. 51

Unable to write to address on device. Internal memory is invalid. | Tag address = '<address>'. 55

Unable to write to tag on device. | Tag address = '<address>', CIP error = <code>, Extended error =
<code>. 47

Unable to write to tag on device. | Tag address = '<address>'. 52

Unable to write to tag on device. Controller tag data type unknown. | Tag address = '<address>',
Unknown data type = <type>. 48

Unable to write to tag on device. Data type not supported. | Tag address = '<address>', Unsupported
data type = '<type>'. 49

Unable to write to tag on device. Tag does not support multi-element arrays. | Tag address =
'<address>'. 51

Unable to write to tag. Data type is illegal for tag. | Tag address = '<address>', Illegal data type =
'<type>'. 50

User-Defined Data Types 22

V

Valid 24

Virtual Network 12

W

Word 19

Write All Values for All Tags 9

Write Only Latest Value for All Tags 9

Write Only Latest Value for Non-Boolean Tags 9

Write Optimizations 9

Write request for tag failed due to a framing error. | Tag address = '<address>'. 46

www.kepware.com

62

	Allen-Bradley Micro800 Ethernet Driver
	Table of Contents
	Overview
	Setup
	Channel Properties - General
	Channel Properties - Ethernet Communications
	Channel Properties - Write Optimizations
	Channel Properties - Advanced
	Device Properties - General
	Channel Properties - Communication Serialization
	Device Properties - Scan Mode
	Device Properties - Timing
	Device Properties - Auto-Demotion
	Device Properties - Communications Parameters
	Device Properties - Options
	Device Properties - Redundancy

	Performance Optimizations
	Optimizing Communications
	Optimizing Applications

	Data Types Description
	Address Descriptions
	Address Formats
	Tag Scope
	Addressing Atomic Data Types
	Addressing Structured Data Types
	Ordering of Array Data

	Advanced Use Cases
	BOOL
	SINT, USINT, and BYTE
	INT, UINT, and WORD
	DINT, UDINT, and DWORD
	LINT, ULINT, and LWORD
	REAL
	LREAL
	SHORT_STRING

	Error Codes
	Encapsulation Protocol Error Codes
	CIP Error Codes
	0x0001 Extended Error Codes
	0x001F Extended Error Codes
	0x00FF Extended Error Codes

	Event Log Messages
	Controller not supported. | Vendor ID = <vendor>, Product type = <type>, Prod...
	Frame received from device contains errors.
	Write request for tag failed due to a framing error. | Tag address = '<addres...
	Read request for tag failed due to a framing error. | Tag address = '<address>'.
	Block read request failed due to a framing error. | Block start = '<address>'...
	Unable to write to tag on device. | Tag address = '<address>', CIP error = <c...
	Unable to read tag from device. | Tag address = '<address>', CIP error = <cod...
	Unable to read block from device. | Block start = '<address>', Block size = <...
	Unable to write to tag on device. Controller tag data type unknown. | Tag add...
	Unable to read tag from device. Controller tag data type unknown. Tag deactiv...
	Unable to read block from device. Controller tag data type unknown. Block dea...
	Unable to write to tag on device. Data type not supported. | Tag address = '<...
	Unable to read tag from device. Data type not supported. Tag deactivated. | T...
	Unable to read block from device. Data type not supported. Block deactivated....
	Unable to write to tag. Data type is illegal for tag. | Tag address = '<addre...
	Unable to read tag from device. Data type is illegal for this tag. Tag deacti...
	Unable to read block from device. Data type is illegal for this block. Block ...
	Unable to write to tag on device. Tag does not support multi-element arrays. ...
	Unable to read tag from device. Tag does not support multi-element arrays. Ta...
	Unable to read block from device. Block does not support multi-element arrays...
	Unable to write to tag on device. | Tag address = '<address>'.
	Unable to read tag from device. Tag deactivated. | Tag address = '<address>'.
	Unable to read block from device. Block deactivated. | Block start = '<addres...
	Device responded with CIP error. | Status code = <code>, Extended status code...
	Memory could not be allocated for tag. | Tag address = '<address>'.
	Device responded with encapsulation error.
	Unable to read tag from device. Internal memory is invalid. | Tag address = '...
	Unable to read tag from device. Data type is illegal for tag. | Tag address =...
	Unable to read tag from device. Internal memory is invalid. Tag deactivated. ...
	Unable to read block from device. Internal memory is invalid. Block deactivat...
	Unable to write to address on device. Internal memory is invalid. | Tag addre...
	Unable to read block from device. Block deactivated. | Block start = '<addres...
	Device identity details. | IP = '<address>', Vendor ID = <vendor>, Product ty...
	Device does not support Fragmented Read/Write Services. Automatically falling...

	Glossary
	Index

