
Custom InterfaceDriver

© 2016 PTC Inc. All Rights Reserved.

Custom Interface Driver

TableofContents
Custom Interface Driver 1

Table of Contents 2

Custom Interface Driver Help 4

Overview 4

Channel Setup 4

Channel Properties - General 5

Channel Properties - Write Optimizations 6

Channel Properties - Advanced 7

Channel Properties - Configuration 7

Channel Properties - Support Information 8

Device Setup 10

Device Properties - General 10

Device Properties - Scan Mode 11

Device Properties - Auto-Demotion 12

Device Properties - Configuration 13

Device Properties - Settings 13

Data Types Descriptions 14

Address Descriptions 16

Automatic Device/Tag Generation 17

Error Descriptions 18

Cannot open shared memory file associated with configuration <configuration name>. Please
verify CIDA is running with proper permissions and configuration name is correct. 18

Unable to read to register <register offset> on device <device name>. Register corrupted. 19

Unable to read from register <register offset> on device <device name>. Register is not
configured for read access. 19

Unable to read from register <register offset> on device <device name>. CIDA <CIDA name>
returned error code <error code>. 19

Unable to read from register <register offset> on device <device name>. Register value type is
not configured for read data. 20

Unable to write to register <register offset> on device <device name>. Register is not configured
for write access. 20

Unable to write to register <register offset> on device <device name>. Register value type is not
configured for write data. 21

Unable to write to register <register offset> on device <device name>. CIDA <CIDA name>
returned error code <error code>. 21

Unable to write to register <register offset> on device <device name>. Register corrupted. 21

Developer Information 23

CIDA Overview 23

www.kepware.com

2

Custom Interface Driver

CIDA Requirements 23

Shared Memory Interface 25

REGISTER Structure 26

DATA Structure 26

VALUE Structure 27

STRINGARRAY Structure 29

Reference Implementation 29

Reference Implementation Architecture 30

CID/CIDA Reference Implementation Demonstration 32

Channel Diagnostics 33

Channel Diagnostics 38

Index 43

www.kepware.com

3

Custom Interface Driver

Custom Interface Driver Help
Help version 1.027

CONTENTS

Overview
What is the Custom Interface Driver?

Channel Setup
How do I configure custom channel properties for this driver?

Device Setup
How do I configure a device for use with this driver?

Data Types Description
What data types does this driver support?

Address Description
How do I address a data location on a Custom Interface Driver device?

Automatic Device/Tag Generation
How can I easily configure tags for the Custom Interface Driver?

Error Descriptions
What error messages does the Custom Interface Driver produce?

Developer Information
As a developer, where can I find supplemental in-depth information and examples of implementation?

Overview
The Custom Interface Driver (CID) provides OPC and native connectivity for third-party custom driver data
without using a toolkit. The custom drivers are called Custom Interface Driver Applications (CIDA) and they
interface with the CID through the inter-process communication method called Shared Memory. The CIDA is
responsible for creating the shared memory file in addition to an XML configuration file that fully defines the
data mapped in shared memory. The configuration file will then be imported into the CID for automatic
device/tag generation within the OPC server.

Communication via shared memory is achieved through standardized structures mapped onto shared
memory. For more information on CID and CIDA data flow, refer to CIDA Overview.

Ã This help file is meant to supplement the help file provided with the CID Application. For more information on
the Reference Implementation provided with the driver, refer to Reference Implementation.

Channel Setup
A channel represents a single CID Application Configuration. Each CID Application must provide a
configuration file that specifies the configuration name used to associate with a shared memory file (in
addition to a list of the configuration's corresponding devices and tags). The CID can support multiple

www.kepware.com

4

Custom Interface Driver

configurations simultaneously; however, each configuration must contain a unique configuration name. For
more information, refer to Channel Configuration.

Channel Properties - General
This server supports the use of simultaneous multiple communications drivers. Each protocol or driver used
in a server project is called a channel. A server project may consist of many channels with the same
communications driver or with unique communications drivers. A channel acts as the basic building block of
an OPC link. This group is used to specify general channel properties, such as the identification attributes
and operating mode.

Identification

Name: User-defined identity of this channel. In each server project, each channel name must be unique.
Although names can be up to 256 characters, some client applications have a limited display window when
browsing the OPC server's tag space. The channel name is part of the OPC browser information.
Ã For information on reserved characters, refer to "How To... Properly Name a Channel, Device, Tag, and Tag
Group" in the server help.

Description: User-defined information about this channel.
Ã Many of these properties, including Description, have an associated system tag.

Driver: Selected protocol / driver for this channel. This property specifies the device driver that was selected
during channel creation. It is a disabled setting in the channel properties.

Ã Note: With the server's online full-time operation, these properties can be changed at any time. This
includes changing the channel name to prevent clients from registering data with the server. If a client has
already acquired an item from the server before the channel name is changed, the items are unaffected. If,
after the channel name has been changed, the client application releases the item and attempts to re-
acquire using the old channel name, the item is not accepted. With this in mind, changes to the properties
should not be made once a large client application has been developed. Utilize the User Manager to prevent
operators from changing properties and restrict access rights to server features.

Diagnostics

Diagnostics Capture: When enabled, this option makes the channel's diagnostic information available to
OPC applications. Because the server's diagnostic features require a minimal amount of overhead
processing, it is recommended that they be utilized when needed and disabled when not. The default is
disabled.
Ã For more information, refer to "Communication Diagnostics" in the server help.
Ã Note: Not all drivers support diagnostics. To determine whether diagnostics are available for a particular
driver, open the driver information and locate the "Supports device level diagnostics" statement.

www.kepware.com

5

Custom Interface Driver

Channel Properties - Write Optimizations
As with any OPC server, writing data to the device may be the application's most important aspect. The
server intends to ensure that the data written from the client application gets to the device on time. Given
this goal, the server provides optimization properties that can be used to meet specific needs or improve
application responsiveness.

Write Optimizations

Optimization Method: controls how write data is passed to the underlying communications driver. The
options are:

l Write All Values for All Tags: This option forces the server to attempt to write every value to the
controller. In this mode, the server continues to gather write requests and add them to the server's
internal write queue. The server processes the write queue and attempts to empty it by writing data
to the device as quickly as possible. This mode ensures that everything written from the client
applications is sent to the target device. This mode should be selected if the write operation order or
the write item's content must uniquely be seen at the target device.

l Write Only Latest Value for Non-Boolean Tags: Many consecutive writes to the same value can
accumulate in the write queue due to the time required to actually send the data to the device. If the
server updates a write value that has already been placed in the write queue, far fewer writes are
needed to reach the same final output value. In this way, no extra writes accumulate in the server's
queue. When the user stops moving the slide switch, the value in the device is at the correct value at
virtually the same time. As the mode states, any value that is not a Boolean value is updated in the
server's internal write queue and sent to the device at the next possible opportunity. This can greatly
improve the application performance.
Ã Note: This option does not attempt to optimize writes to Boolean values. It allows users to
optimize the operation of HMI data without causing problems with Boolean operations, such as a
momentary push button.

l Write Only Latest Value for All Tags: This option takes the theory behind the second optimization
mode and applies it to all tags. It is especially useful if the application only needs to send the latest
value to the device. This mode optimizes all writes by updating the tags currently in the write queue
before they are sent. This is the default mode.

Duty Cycle: is used to control the ratio of write to read operations. The ratio is always based on one read for
every one to ten writes. The duty cycle is set to ten by default, meaning that ten writes occur for each read
operation. Although the application is performing a large number of continuous writes, it must be ensured
that read data is still given time to process. A setting of one results in one read operation for every write
operation. If there are no write operations to perform, reads are processed continuously. This allows
optimization for applications with continuous writes versus a more balanced back and forth data flow.

Ã Note: It is recommended that the application be characterized for compatibility with the write
optimization enhancements before being used in a production environment.

www.kepware.com

6

Custom Interface Driver

Channel Properties - Advanced
This group is used to specify advanced channel properties. Not all drivers support all properties; so the
Advanced group does not appear for those devices.

Non-Normalized Float Handling: Non-normalized float handling allows users to specify how a driver
handles non-normalized IEEE-754 floating point data. A non-normalized value is defined as Infinity, Not-a-
Number (NaN), or as a Denormalized Number. The default is Replace with Zero. Drivers that have native
float handling may default to Unmodified. Descriptions of the options are as follows:

l Replace with Zero: This option allows a driver to replace non-normalized IEEE-754 floating point
values with zero before being transferred to clients.

l Unmodified: This option allows a driver to transfer IEEE-754 denormalized, normalized, non-
number, and infinity values to clients without any conversion or changes.

Ã Note: This property is disabled if the driver does not support floating point values or if it only supports the
option that is displayed. According to the channel's float normalization setting, only real-time driver tags
(such as values and arrays) are subject to float normalization. For example, EFM data is not affected by this
setting.lin

Ã For more information on the floating point values, refer to "How To ... Work with Non-Normalized Floating
Point Values" in the server help.

Channel Properties - Configuration
The Configuration property group is used to specify the location and behavior of the configuration file, as
well as any Advanced settings.

Configuration File
The configuration file is an XML file that contains the shared memory file's name, size, associated devices,
and appropriate tag definitions. This property is used to specify its location. To access the File Import
property group, click the custom action button in the Configuration File property and set the filter to "*.xml."
Select the desired file and then click Open. The configuration name within the file must be unique so that
one channel does not interfere with another channel's access to a register. Once set, the file will be checked
for uniqueness.

www.kepware.com

7

Custom Interface Driver

Ã Caution: Users must regenerate the configuration file every time a change is made to it. For more
information, refer to "Regenerate" below.

Ã Important: When running in System Service Mode, the configuration file must be located in an accessible
folder in order to be loaded by the Runtime. For example, a file residing in a network drive that requires
authentication will cause the loading to fail. For more information on System Service Mode, refer to the
server help file.

Regenerate
The Regenerate File property is used to manually start automatic device/tag generation. To trigger the
action, set the property to Enable and click Apply. For more information, refer to Automatic Device/Tag
Generation.

Advanced
The Advanced settings should only be used by CID Application Developers. Descriptions of the properties
are as follows:

l Override Configuration File: When enabled, this option overrides the configuration name and
shared memory size as defined by the configuration file. In the absence of a configuration file, the
associated properties may be used to manually define the configuration name and shared memory
size. The default setting is disabled.

l Configuration Name: This property contains the configuration name that the channel will use when
accessing shared memory. It must be unique across channels so that one channel will not interfere
with another channel's access to a register. The driver will check for uniqueness automatically, and
warn the user/override when necessary. The default setting is "cidarefimplcpp".

l Shared Memory Size (bytes: This property contains the shared memory size that the channel will
use during tag address validation. When the Override Configuration File setting is disabled, this
property will hold the value last imported during automatic device/tag generation despite being
disabled. When the Override Configuration File setting is enabled, this property will be enabled and
capable of modification. The range is 0 to 2,147,483,648. The default setting is 0.

Ã Note: If the Override Configuration File property is disabled after either the configuration name or shared
memory size settings have been changed, the settings will return to their default settings. The default
settings are the values last loaded from the configuration file.

Channel Properties - Support Information
The property group contains support information. The information may vary depending on what the
supporting party has decided to include.

Technical Support Contact Information

www.kepware.com

8

Custom Interface Driver

This information includes the supporting party's company name, phone, email address, web address, and any
additional information.
Support Info

To Launch the Configuration: This text includes brief instructions on how to start the supporting party's
Configuration component.
To Launch the Runtime: This text includes brief instructions on how to start the supporting party's Runtime
component.
To Launch the Help: This text includes brief instructions on how to access the supporting party's help
documentation.
Additional: This text includes optional miscellaneous information.

www.kepware.com

9

Custom Interface Driver

Device Setup
A device is a logical collection of tags that corresponds to the physical device/data provider being polled by
the CID Application.

Device Properties - General
A device represents a single target on a communications channel. If the driver supports multiple controllers,
users must enter a device ID for each controller.

Identification

Name: This property specifies the name of the device. It is a logical user-defined name that can be up to
256 characters long, and may be used on multiple channels.

Ã Note: Although descriptive names are generally a good idea, some OPC client applications may have a
limited display window when browsing the OPC server's tag space. The device name and channel name
become part of the browse tree information as well. Within an OPC client, the combination of channel name
and device name would appear as "ChannelName.DeviceName".
Ã For more information, refer to "How To... Properly Name a Channel, Device, Tag, and Tag Group" in server
help.

Description: User-defined information about this device.
Ã Many of these properties, including Description, have an associated system tag.

Channel Assignment: User-defined name of the channel to which this device currently belongs.

Driver: Selected protocol driver for this device.

Model: This property specifies the specific type of device that is associated with this ID. The contents of the
drop-down menu depends on the type of communications driver being used. Models that are not supported
by a driver are disabled. If the communications driver supports multiple device models, the model selection
can only be changed when there are no client applications connected to the device.

Ã Note: If the communication driver supports multiple models, users should try to match the model
selection to the physical device. If the device is not represented in the drop-down menu, select a model that
conforms closest to the target device. Some drivers support a model selection called "Open," which allows
users to communicate without knowing the specific details of the target device. For more information, refer
to the driver help documentation.

www.kepware.com

10

Custom Interface Driver

ID: This property specifies the device's driver-specific station or node. The type of ID entered depends on
the communications driver being used. For many communication drivers, the ID is a numeric value. Drivers
that support a Numeric ID provide users with the option to enter a numeric value whose format can be
changed to suit the needs of the application or the characteristics of the selected communications driver.
The ID format can be Decimal, Octal, and Hexadecimal.

Ã Note: If the driver is Ethernet-based or supports an unconventional station or node name, the device's
TCP/IP address may be used as the device ID. TCP/IP addresses consist of four values that are separated by
periods, with each value in the range of 0 to 255. Some device IDs are string based. There may be additional
properties to configure within the ID field, depending on the driver. For more information, refer to the
driver's help documentation.

Operating Mode

Data Collection: This property controls the device's active state. Although device communications are
enabled by default, this property can be used to disable a physical device. Communications are not
attempted when a device is disabled. From a client standpoint, the data is marked as invalid and write
operations are not accepted. This property can be changed at any time through this property or the device
system tags.

Simulated: This option places the device into Simulation Mode. In this mode, the driver does not attempt to
communicate with the physical device, but the server continues to return valid OPC data. Simulated stops
physical communications with the device, but allows OPC data to be returned to the OPC client as valid data.
While in Simulation Mode, the server treats all device data as reflective: whatever is written to the simulated
device is read back and each OPC item is treated individually. The item's memory map is based on the group
Update Rate. The data is not saved if the server removes the item (such as when the server is reinitialized).
The default is No.

Ã Notes:

1. This System tag (_Simulated) is read only and cannot be written to for runtime protection. The System
tag allows this property to be monitored from the client.

2. In Simulation mode, the item's memory map is based on client update rate(s) (Group Update Rate for
OPC clients or Scan Rate for native and DDE interfaces). This means that two clients that reference
the same item with different update rates return different data.

Ã Simulation Mode is for test and simulation purposes only. It should never be used in a production
environment.

Device Properties - Scan Mode
The Scan Mode specifies the subscribed-client requested scan rate for tags that require device
communications. Synchronous and asynchronous device reads and writes are processed as soon as
possible; unaffected by the Scan Mode properties.

Scan Mode: specifies how tags in the device are scanned for updates sent to subscribed clients.
Descriptions of the options are:

www.kepware.com

11

Custom Interface Driver

l Respect Client-Specified Scan Rate: This mode uses the scan rate requested by the client.
l Request Data No Faster than Scan Rate: This mode specifies the maximum scan rate to be used.

The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.
Ã Note: When the server has an active client and items for the device and the scan rate value is
increased, the changes take effect immediately. When the scan rate value is decreased, the changes
do not take effect until all client applications have been disconnected.

l Request All Data at Scan Rate: This mode forces tags to be scanned at the specified rate for
subscribed clients. The valid range is 10 to 99999990 milliseconds. The default is 1000 milliseconds.

l Do Not Scan, Demand Poll Only: This mode does not periodically poll tags that belong to the
device nor perform a read to get an item's initial value once it becomes active. It is the client's
responsibility to poll for updates, either by writing to the _DemandPoll tag or by issuing explicit device
reads for individual items. For more information, refer to "Device Demand Poll" in server help.

l Respect Tag-Specified Scan Rate: This mode forces static tags to be scanned at the rate specified
in their static configuration tag properties. Dynamic tags are scanned at the client-specified scan
rate.

Initial Updates from Cache: When enabled, this option allows the server to provide the first updates for
newly activated tag references from stored (cached) data. Cache updates can only be provided when the
new item reference shares the same address, scan rate, data type, client access, and scaling properties. A
device read is used for the initial update for the first client reference only. The default is disabled; any time a
client activates a tag reference the server attempts to read the initial value from the device.

Device Properties - Auto-Demotion
The Auto-Demotion properties can temporarily place a device off-scan in the event that a device is not
responding. By placing a non-responsive device offline for a specific time period, the driver can continue to
optimize its communications with other devices on the same channel. After the time period has been
reached, the driver re-attempts to communicate with the non-responsive device. If the device is responsive,
the device is placed on-scan; otherwise, it restarts its off-scan time period.

Demote on Failure: When enabled, the device is automatically taken off-scan until it is responding again.
Ã Tip: Determine when a device is off-scan by monitoring its demoted state using the _AutoDemoted
system tag.

Timeouts to Demote: Specify how many successive cycles of request timeouts and retries occur before the
device is placed off-scan. The valid range is 1 to 30 successive failures. The default is 3.

Demotion Period: Indicate how long the device should be placed off-scan when the timeouts value is
reached. During this period, no read requests are sent to the device and all data associated with the read
requests are set to bad quality. When this period expires, the driver places the device on-scan and allows for
another attempt at communications. The valid range is 100 to 3600000 milliseconds. The default is 10000
milliseconds.

Discard Requests when Demoted: Select whether or not write requests should be attempted during the
off-scan period. Disable to always send write requests regardless of the demotion period. Enable to discard

www.kepware.com

12

Custom Interface Driver

writes; the server automatically fails any write request received from a client and does not post a message
to the Event Log.

Device Properties - Configuration
Advanced
The Advanced settings should only be used by CID Application Developers.

Override Configuration File: When enabled, this option overrides the shared memory device offset and
device identifier as defined by the configuration file. In the absence of a configuration file, the associated
properties may be used to manually define the shared memory device offset and device identifier. The
default setting is disabled.
Ã Note: If the Override Configuration File property is disabled after either the shared memory device offset
or the device identifier settings have been changed, the settings will return to their default settings. The
default settings are the values last loaded from the configuration file.

Shared Memory Device Offset: This property is used to define the starting byte offset into the shared
memory map for the given device. All register offsets (such as tag addresses) are relative to the shared
memory device offset. If the configuration is designed so that all devices are assigned a shared memory
device offset of 0, then all register offsets must be unique. This is because the register offsets are relative to
the beginning of the file. If all devices are assigned a non-zero shared memory device offset, then there may
be multiple tags with the same offset as these register offsets are relative to the beginning of the device
under the channel. Setting this property incorrectly poses a safety hazard, because overlapping registers
may result in timeouts or corrupt data.
Ã Note: When the Override Configuration File setting is disabled, this property will hold the value last
imported during automatic device/tag generation despite being disabled. When the Override Configuration
File setting is enabled, this property will be enabled and capable of modification. The range is 0 to
2147483647. The default setting is 0.

Device Identifier: The device identifier is an optional label used to identify the device. It is useful in
associating the device with a physical device/data provider and may contain up to 256 characters. The
default setting is 1.

Device Properties - Settings

Timing

Scan Rate Floor: Specify the device's minimum scan rate. Any client scan rate that is faster than the
device's scan rate floor setting will be capped at the device's setting. The minimum value is 250
milliseconds. The maximum value is 60000 milliseconds. The default is 250 milliseconds.

www.kepware.com

13

Custom Interface Driver

Data Types Descriptions

Data Type Description
Boolean Single bit

Char Signed 8 bit value

bit 0 is the low bit
bit 6 is the high bit
bit 7 is the sign bit

Byte Unsigned 8 bit value

bit 0 is the low bit
bit 7 is the high bit

Short Signed 16 bit value

bit 0 is the low bit
bit 14 is the high bit
bit 15 is the sign bit

Word Unsigned 16 bit value

bit 0 is the low bit
bit 15 is the high bit

DWord Unsigned 32 bit value

bit 0 is the low bit
bit 31 is the high bit

Long Signed 32 bit value

bit 0 is the low bit
bit 30 is the high bit
bit 31 is the sign bit

BCD Two byte packed BCD Value range is 0-9999.

Behavior is undefined for values beyond this range.

LBCD Four byte packed BCD Value range is 0-99999999.

Behavior is undefined for values beyond this range.

Float 32 bit floating point value

bit 0 is the low bit
bit 31 is the high bit

Double 64 bit floating point value

bit 0 is the low bit
bit 63 is the high bit

String Typically null terminated, null padded or blank padded ASCII string.

For some drivers only, Strings include HiLo LoHi byte order selection.

www.kepware.com

14

Custom Interface Driver

Data Type Description
Date 64 bit floating point value

www.kepware.com

15

Custom Interface Driver

Address Descriptions
Data is represented in a structure called a Shared Memory Data Register. Each register maintains separate
Read and Write values in addition to corresponding error, quality, timestamp, and status information. The
following information describes how to access Read and Write values. The syntax is as follows:

D<byte offset> [/ <string length>] [[<row>] [<column>]]

Component Action Description
<Byte Offset> Required Represents the registers byte offset relative to the devices memory map

offset.

<String
Length>

Optional String length.

<Row> Optional Array row count.

<Column> Optional Array column count.

Ranges
The maximum shared memory file size is limited to 2,147,483,648 bytes (2 gigabytes). This limitation will be
enforced at project load (schema) and address validation.

Valid Combinations/Hints
D<byte offset>
D<byte offset> / <string length>
D<byte offset> [<row>] [<column>]

Examples
8-bit value at byte offset 0
Address = D0
Data Type = Byte

32-character string value starting at byte offset 1000
Address = D1000/32
Data Type = String

www.kepware.com

16

Custom Interface Driver

Automatic Device/Tag Generation
The CIDA will be responsible for generating a configuration file that will be imported by the CID and used for
automatically generating devices and tags. When running as a System Service, this file should reside locally
and not in a network location. For more information, refer to Channel Setup.

The driver will perform automatic device/tag generation under the following circumstances:

1. Upon completion of the Channel Setup Wizard with a valid configuration file specified.

2. If the configuration file name changes in Dialog Mode and is then applied.

Device Import
Devices will be automatically generated based on the following information:

l Device Name

l Device Identifier

l Custom Properties

Note: The device identifier will not be validated. It is included for organizational purposes only.

Tag Import
Tags will be automatically generated based on the following information:

l Tag Name

l Tag Address

l Tag Data Type

l Tag Read/Write Access

l Tag Scan Rate (Milliseconds)

l Tag Description

Manually Starting Automatic Device/Tag Generation
To manually start automatic device/tag generation, open the Configuration property group in Channel
Properties and enable Regenerate File.

www.kepware.com

17

Custom Interface Driver

Error Descriptions
The following error/warning messages may be generated. Click on the link for a description of the message.

General Errors
Cannot open Shared Memory file associated with Configuration <configuration name>.
Please verify CIDA is running with proper permissions and Configuration name is correct.

Read Errors
Unable to read from register <register offset> on device <device name>. Register is not
configured for read access.
Unable to read from register <register offset> on device <device name>. Register value
type is not configured for read data.
Unable to read from register <register offset> on device <device name>. Register
corrupted.
Unable to read from register <register offset> on device <device name>. CIDA <CIDA
name> returned error code <error code>.

Write Errors
Unable to write to register <register offset> on device <device name>. Register is not
configured for write access.
Unable to write to register <register offset> on device <device name>. Register value
type is not configured for write data.
Unable to write to register <register offset> on device <device name>. Register
corrupted.
Unable to write to register <register offset> on device <device name>. CIDA <CIDA name>
returned error code <error code>.

Cannot open shared memory file associated with configuration
<configuration name>. Please verify CIDA is running with proper permissions
and configuration name is correct.
Error Type:
Warning

Possible Cause:
No shared memory file and/or global mutex has been created or associated with configuration name
<configuration name>.

Solution:
Make sure that the CIDA is running and creating the shared memory file/global mutex associated with the
configuration name <configuration name>. Third-party utilities (such as Microsoft's Process Explorer) can be
used to determine if these resources have been created.

Notes:
For launch instructions, help location and support contact information, refer to the Support Information tab
in Channel Properties.

See Also:

www.kepware.com

18

Custom Interface Driver

Support Information

Unable to read to register <register offset> on device <device name>. Register
corrupted.
Error Type:
Warning

Possible Cause:

1. The register was not properly configured by the CIDA.

2. An incorrect Register offset was provided for this address.

Solution:
Confirm that the latest configuration file associated with the CID Application Configuration has been
imported.

Note:
For more information on launch instructions, help location, and support contact information, refer the Support
Information tab in Channel Properties.

See Also:
Support Information

Unable to read from register <register offset> on device <device name>.
Register is not configured for read access.
Error Type:
Warning

Possible Cause:

1. The register was not properly configured by the CIDA.

2. An incorrect register offset was provided for the address.

Solution:
Confirm that the latest configuration file associated with the CID Application Configuration has been
imported.

Note:
For more information on launch instructions, help location, and support contact information, refer the Support
Information tab in Channel Properties.

See Also:
Support Information

Unable to read from register <register offset> on device <device name>. CIDA
<CIDA name> returned error code <error code>.
Error Type:
Warning

www.kepware.com

19

Custom Interface Driver

Possible Cause:
The device/data provider being polled/written by the CIDA has returned an error.

Solution:
For the help location and support contact information to determine the cause and solution for this error, refer to
the Support Information tab in Channel Properties.

See Also:
Support Information

Unable to read from register <register offset> on device <device name>.
Register value type is not configured for read data.
Error Type:
Warning

Possible Cause:

1. The register was not properly configured by the CIDA.

2. An incorrect register offset was provided for this address.

Solution:
Confirm that the latest configuration file associated with the CID Application Configuration has been
imported.

Note:
For more information on launch instructions, help location, and support contact information, refer the Support
Information tab in Channel Properties.

See Also:
Support Information

Unable to write to register <register offset> on device <device name>. Register
is not configured for write access.
Error Type:
Warning

Possible Cause:

1. The register was not properly configured by the CIDA.

2. An incorrect register offset was provided for this address.

Solution:
Confirm that the latest configuration file associated with the CID Application Configuration has been
imported.

Note:
For more information on launch instructions, help location, and support contact information, refer the Support
Information tab in Channel Properties.

See Also:

www.kepware.com

20

Custom Interface Driver

Support Information

Unable to write to register <register offset> on device <device name>. Register
value type is not configured for write data.
Error Type:
Warning

Possible Cause:

1. The register was not properly configured by the CIDA.

2. An incorrect register offset was provided for this address.

Solution:
Confirm that the latest configuration file associated with the CID Application Configuration has been
imported.

Note:
For more information on launch instructions, help location, and support contact information, refer the Support
Information tab in Channel Properties.

See Also:
Support Information

Unable to write to register <register offset> on device <device name>. CIDA
<CIDA name> returned error code <error code>.
Error Type:
Warning

Possible Cause:
The device/data provider being polled/written by the CIDA has returned an error.

Solution:
For the help location and support contact information to determine the cause and solution for this error, refer to
the Support Information tab in Channel Properties.

See Also:
Support Information

Unable to write to register <register offset> on device <device name>. Register
corrupted.
Error Type:
Warning

Possible Cause:

1. The register was not properly configured by the CIDA.

2. An incorrect register offset was provided for this address.

Solution:

www.kepware.com

21

Custom Interface Driver

Confirm that the latest configuration file associated with the CID Application Configuration has been
imported.

Note:
For more information on launch instructions, help location, and support contact information, refer the Support
Information tab in Channel Properties.

See Also:
Support Information

www.kepware.com

22

Custom Interface Driver

Developer Information
The Developer Information pages provide in-depth information for understanding and implementing a CID
Application. For information on a specific topic, select a link from the list below.

CIDA Overview
Shared Memory Interface
Reference Implementation

CIDA Overview
The Custom Interface Driver (CID) has two components: the CID driver plug-in (which runs within the OPC
server's process) and the Custom Interface Driver Application (CIDA). The Custom Interface Driver (CID)
allows external parties to push data into and out of the OPC server for reads and writes, while relying on the
OPC server to provide connectivity to all of its client/server protocols. The CIDA will be responsible for
creating, initializing and freeing the shared memory area. It will also be responsible for creating a
configuration file, which must conform to a schema defined by the OPC server for use with the CID. Users
will be able to import the configuration file from within the CID channel settings, which will automatically
generate devices and tags in the server.

Shared Memory
In order to gain access to shared memory, both the shared memory client and the server must acquire a
lock. Once acquired, the process can read and write to shared memory. Since only one process can hold the
lock at a time, the lock shouldn't be held for too long because it starves the other processes from operating.
Once the process is done working with the shared memory, it must release the lock immediately.

CIDA Requirements
The CIDA must use Win32 API for Shared Memory creation, initialization, usage, and destruction. Thus,
developers must use a language that supports Win32 API calls, such as C++, VB.NET, C#, or Java Native
Interface (JNI).

CIDA Functions
The following information describes specific functions and the order in which these actions must be
performed.

www.kepware.com

23

Custom Interface Driver

1. The CIDA must create the shared memory file if one does not exist.

a. It must use OpenFileMapping with or without security* to open the shared memory file. If
the file cannot be opened, use CreateFileMapping with or without security* to create the
shared memory file.

Note: Normally the CIDA creates the shared memory file and the CID opens the shared
memory file. In the case where the CIDA is restarted after the CID has gained access to the
shared memory file, the CIDA will be required to open the file (since it is already created).

b. File name must be of the form Global\<Configuration Name>_sm and cannot exceed 100
characters.

c. File size cannot exceed 2GB.

d. It must use MapViewOfFile/UnMapViewOfFile to map shared memory file into the CIDA's
process space.

e. It must use CloseHandle on exit to release the shared memory file.

2. The CIDA must create a global mutex for the purpose of locking access to the shared memory file.

a. It must use CreateMutex with or without security to create the mutex*.

Note: The mutex should be created and locked prior to creating and initializing the shared
memory to ensure that the CID does not access the memory prematurely.

b. Mutex name must be of the form Global\ <Configuration Name>_sm_lock.

3. The CIDA must conform to the Shared Memory Data Register structure in the following ways. For
more information, refer to Shared Memory Interface.

a. If the Register supports reads, it must be configured as follows.

ii. Assigns REGISTER.ReadOffset.

iii. Initializes DATA.STATUS flags to 0.

iv. Initializes VALUE.Type.

v. Initializes VALUE._Value.

vi. Initializes VALUE.ExtSize if register is a string or an array.

vii. Reserves VALUE.ExtSize bytes starting at VALUE.ExtValue for string and array data.

viii. Initializes VALUE.ExtValue for string and array data.

ix. Initializes STRINGARRAY.StringSize if register is a string array. STRINGARRAY must
be cast onto VALUE.ExtValue for string arrays.

b. If the Register supports writes, it must be configured as follows.

ii. Assigns REGISTER.WriteOffset.

iii. Initializes DATA.STATUS flags to 0.

iv. Initializes VALUE.Type.

www.kepware.com

24

Custom Interface Driver

v. Initializes VALUE._Value.

vi. Initializes VALUE.ExtSize if register is a string or an array.

vii. Reserves VALUE.ExtSize bytes starting at VALUE.ExtValue for string and array data.

viii. Initializes VALUE.ExtValue for string and array data.

ix. Initializes STRINGARRAY.StringSize if register is a string array. STRINGARRAY must
be cast onto VALUE.ExtValue for string arrays.

c. Checks WriteData.RequestPending to determine if a write request is available. When true:

ii. Caches the write value.

iii. Clears WriteData.RequestPending before performing the write.

iv. Performs the write.

d. Sets WriteData.Error/ErrorCode based on a successful or failed write response.

e. Sets WriteData.ResponsePending after WriteData.Error/ErrorCode is set on a successful
or failed write response.

f. Checks ReadData.RequestPending to determine if a read request is available. When true:

ii. Clears ReadData.RequestPending before performing the read.

iii. Performs the read.

g. Sets ReadData.Error/ErrorCode based on a successful or failed read response.

h. Sets ReadData.Quality on a successful or failed read response.

i. Sets ReadData.Timestamp on a successful or failed read response.

j. Sets ReadData.Value on a successful read response.

k. Sets ReadData.ResponsePending after items g. through j. are set on a successful or failed
read response.

4. The CIDA must release resources for global mutex and shared memory file using the following:

a. CloseHandle returned from CreateFileMapping.

b. CloseHandle returned from CreateMutex.

*Creating the shared memory file and mutex with security attributes is optional but recommended. The only
requirement is that the CID must be able to open these resources from where it is running.

Note: The CID will be running in the context of a Windows Service under the System Account by default.

Shared Memory Interface
The CID and CIDA communicate via Shared Memory by agreeing on a protocol that will be used to exchange
information (in the same way that an application communicates with hardware). This protocol or interface is
defined through structures, which are mapped onto the shared memory file's byte memory.

www.kepware.com

25

Custom Interface Driver

The main structure that defines a data item is the REGISTER structure. Each data item requires its own
REGISTER. Its location within the shared memory is set by the CIDA and is termed the byte offset in Address
Descriptions. The byte offset must be unique for each REGISTER. When calculating the byte offset, users
must take the footprint consumed by the REGISTER and its nested structures into account in order to prevent
overlap with other registers. This is important because overlapping registers pose a safety hazard: they can
result in timeouts and corrupt data.

For information on a specific structure, select a link from the list below.

REGISTER Structure
DATA Structure
VALUE Structure
STRINGARRAY Structure

REGISTER Structure
The following table describes how a register is arranged in Shared Memory.

Register
Member Offset Size Description

DWORD
ReadOffset

0 4 Value of 0 in this field is Write Only; otherwise, byte offset (R) from
beginning of this header to ReadData. This is usually 12 bytes.

DWORD
WriteOffset

4 4 Value of 0 in this field is Read Only; otherwise, byte offset (W) from
beginning of this header to WriteData.

BYTE
Reserved
[4]

8 4 Reserved.

DATA
ReadData*

R Variable. Read data for this register.

DATA
WriteData*

W Variable. Write data for this register.

*For more information, refer to DATA Structure.

DATA Structure

Data Member Offset Size Description
typedef struct _
tagSTATUS
{
WORD
RequestPending :
1;

WORD
ResponsePending
: 1;

0 2 Status bit field.

True for new Read or Write request. Set by the CID, cleared by the
CIDA.

True when new Read or Write response (success or failure) is
available. Set by the CIDA, cleared by the CID.

True when ErrorCode is applicable. CID will not look at ErrorCode if
error is false. Set by the CIDA upon error condition, cleared by CIDA

www.kepware.com

26

Custom Interface Driver

Data Member Offset Size Description

WORD Error : 1;

WORD Reserved :
13;
} STATUS

when error condition no longer exists.

Reserved.

DWORD
ErrorCode

2 4 Vendor-specific error that will be posted in OPC server's Event Log.
The corresponding tag will be set to Quality. CID will not look at
ErrorCode if error is false.

WORD Quality 6 2 For valid OPC quality values, refer to the Visual C++ Custom Interface
VS2008 Example for a complete list of OPC Quality values.

FILETIME
Timestamp

8 8 64-bit structure representing the number of 100-nanosecond
intervals since 1/1/1601.

typedef struct
{
DWORD LowDateTime
DWORD HighDateTime
} FILETIME

VALUE Value* 16 13** The data value.

*For more information, refer to VALUE Structure.
**Size will exceed this value for string and array data.

VALUE Structure

Value
Member Offset Size Description

VALTYPE Type 0 2 Where VALTYPE is a WORD with possible values:

0 T_UNDEFINED
1 T_BOOL
2 T_BYTE
3 T_CHAR
4 T_WORD
5 T_SHORT
6 T_DWORD
7 T_LONG
8 T_FLOAT
9 T_DOUBLE
10 T_DATE
11 T_STRING
0x1000 T_ARRAY

Value cannot be of type T_ARRAY by itself, it must be
masked with one of the above types.

www.kepware.com

27

Custom Interface Driver

WORD
Reserved

2 2 Reserved.

union
{
BOOL boolVal
BYTE bVal
CHAR cVal
WORD wVal
SHORT iVal
DWORD dwVal
LONG lVal
FLOAT fltVal
DOUBLE dblVal
DATE dateVal
} _Value;

4 8 The data value will be stored in this union to facilitate easy
access without type conversion. The only exceptions are
string and array data, which will utilize ExtValue.

WORD ExtSize 12 2 Maximum number of bytes ExtValue is capable of storing.

ExtValue [] 14 Variable. The data value for string and array data will be stored at this
placeholder.

Strings and Arrays
String length and array data are unknown at compile time. They are application-specific and chosen at
runtime. String length and array data are stored in the byte array "ExtValue" in order to allow for variable
length. The number of bytes in ExtValue is stored in "ExtSize."

String Data
ExtValue will store the packed, wide character, null terminated string data. Wide characters use 2 bytes per
character, thereby allowing for Unicode strings. It is recommended that users be cautious when copying
string data into ExtValue, since ExtSize is the maximum number of bytes that can be stored in ExtValue, not
the number of characters. The number of characters that can be stored is ExtSize / 2.

Important: ExtSize is not the current length of the string.

Array Data
ExtValue will store the array data in the order given in the examples below.

Example 1
1 Dimensional Array (1 row, y columns)
Element[0], Element[1], …Element[n]

Example 2
2 Dimensional Arrays (x rows, y columns)
Element[0][0], … Element[0][y], Element [1][0], … Element[1][y], … Element[x][y]

String Arrays
A string array is defined as an array of equal length strings. They are stored similar to standard arrays with
the exception that a WORD precedes the array data, representing the maximum number of characters in
each string (not the length). The structure STRINGARRAY encapsulates this value and the array data to
follow. For more information, refer to STRINGARRAY Structure.

www.kepware.com

28

Custom Interface Driver

STRINGARRAY Structure

STRINGARRAY
Member Offset Size Description

WORD StringSize 0 2 The size of each string in the array as a wide character count.
Each string in the array is of equal length.

BYTE Data [] 2 Variable. Placeholder for string array data.

Example
String Array D0/10 [5]
This is an array of 5, 10 character strings.

VALUE.ExtSize would equal (10 characters * 2 bytes per wide character) * 5 elements + size of (StringSize) =
102 bytes.

The STRINGARRAY would be cast onto VALUE.ExtValue where STRINGARRAY.StringSize would be set to 10.
Assuming the string data = "hello", "world", the first two array elements of STRINGARRAY.Data would be
stored as:

'h' 'e' 'l' 'l' 'o' 0x00 0x00 0x00 0x00 0x00, 'w' 'o' 'r' 'l' 'd' 0x00 0x00 0x00 0x00 0x00

Reference Implementation
A reference implementation is provided with the driver. It will do the following:

1. Create a shared memory file.

2. Create a mutex available to multiple processes.

3. Define two devices, each with a name, device identifier, and tag table.

4. Define a tag table for each device that contains at least 5 tags. Implementation should allow for
expanding the available number of tags by adding to the table only. Include string and array
references so data serialization can be fully demonstrated.

Each tag will have the following attributes:

- Name (such as Valve1).
- Register offset.
- Data type. The data types included are as follows:

a. Boolean

b. Char

c. Byte

d. Short

e. Word

f. Long

g. DWord

www.kepware.com

29

Custom Interface Driver

h. Float

i. Double

j. Date

k. String

- Array Size is -1 if not applicable.
- Description (such as Slurry output).
- Group (such as X Axis).

5. Simulate reading from a device by reading from a cached value on every request. This value is used
as the Read response.

6. Simulate writing to a device by writing to a cached value with the value in the Write request.

7. Perform the simulated Reads and Writes outside the shared memory lock.

8. Accept command line argument "exportconfig" to export the configuration file that meets the
requirements of the configuration schema. Shared memory name and size will be hard-coded in the
sample. The following support information is included:

a. Company Name: My Company

b. Phone: 1-888-555-1212

c. Email: support@mycompany.com

d. Configuration Launch Hint: At the command prompt…

e. Runtime Launch Hint: At the command prompt…

f. Help Launch Hint

g. Additional

9. Output XML in rudimentary fashion (such as string output), rather than utilizing XML DOM/SAX parser
in this reference implementation.

Reference Implementation Architecture
The Shared Memory Server requirements were listed in CIDA Overview. The following is for implementing
a reference sample only and not a requirement of all CIDAs. The four main classes are CRuntime, CDevice,
CTag, and CValue.

CRuntime

l Creates CDevices and CTags from table.

l Exports configuration settings to configuration file when requested.

l Thread for processing reads and writes.

l Owns list of CDevices.

CDevice

l Exports its settings to configuration file when requested.

l Provides next tag to process in CRuntime thread.

www.kepware.com

30

Custom Interface Driver

l Owns list of CTags.

CTag

l Exports its settings to configuration file when requested.

l Read and write data members for caching data from Shared Memory.

Note: Both Write data from Shared Memory and Simulated Read data are stored at this object.

CValue

l Performs value simulation.

l Manages extended value (arrays and strings) for local storage (CTag).

l Provides VALTYPE helper functions.

l Provides Date and Time conversion functions.

Threads
The Reference Implementation has two threads: Main Application Thread and Read/Write Thread. The
Main Application Thread is responsible for creating and destroying the Read/Write thread. It also fires a quit
event when the quit character is entered at the command line. The Read/Write Thread is responsible for
reading from or writing to the device and shared memory.

Read/Write to Device

1. If the current tag has its "Write request pending" flag set, the following will occur:

l A write will be performed to the device.

l Upon completion, the write result will be cached and the tag flag will be set as "Write
response pending."

2. If the current tag has its "Read request pending" flag set, the following will occur:

l A read will be peformed from the device.

l Upon completion, the read result will be cached and the tag flag will be set as "Read response
pending."

Read/Write to Shared Memory

1. If the current tag has its "Write response pending" flag set, the following will occur:

l The Shared Memory will be updated with the Write result.

l The Write ResponsePending flag will be set.

2. If the current tag has its "Read response pending" flag set, the following will occur:

l The Shared Memory will be updated with the Read result.

l The Read ResponsePending flag will be set.

3. Get a new tag to process. The walk list of devices and device's list of tags are as follows: first device,
first tag; first device, second tag and so on.

4. If the Shared Memory Register for the current tag has a Write RequestPending, set the "Write request
pending" flag on tag.

www.kepware.com

31

Custom Interface Driver

5. If the Shared Memory Register for the current tag has a Read RequestPending, set the "Read request
pending" flag on tag.

6. Read/Write to device.

CID/CIDA Reference Implementation Demonstration
For information on implementing CID/CIDA, follow the instructions below.

1. Click Start and then navigate to the Example Source Code menu. Then, select Custom Interface
Example Code | Visual C++ Custom Interface VS2008 Example.

2. Build "cidarefimplcpp" for Release Mode.

3. Once the CIDA executable file has been created, run the "exportconfig" command line against it to
generate the XML configuration file for the server. For example, <CIDA Filename>.exe -exportconfig.

4. Run "cidarefimplcpp.exe". A console will appear that says "Enter q to quit."

5. Next, launch the OPC server.

6. In the Administrator tool, select Configuration. Then, click File | New.

7. To invoke a new Channel Wizard, click on Click to add a channel.

8. Click Next. In the drop-down box, select Custom Interface.

9. Click Next.

10. Click Next. When prompted to enter or browse for a configuration file, click on the browse button
(designated by ellipses) in order to invoke the File Open dialog.

11. To complete the Channel Wizard, click Next and then click Finish. Devices and tags will be
generated automatically based on the configuration file.

12. Expand the channel: two devices called "Device1" and "MotionController1" should be visible. Expand
the devices: tags and tag groups should be visible.

13. Right-click on one of the devices and then select Properties.

14. In the Device Properties dialog, users will note that the Device Name was automatically imported,
and that there are no models to choose.

15. Click on the Settings property group to display the Timing properties. Click on the Configuration
property group to display the Configuration File and Advanced settings. For more information,
refer to Device Configuration.

16. Next, launch the OPC Quick Client that comes with the OPC server by clicking Tools | Launch OPC
Quick Client.

17. Browse to "Channel1.Device1" and "Channel1.MotionController1". Items will be mapping to the tags
within the OPC server.

www.kepware.com

32

Custom Interface Driver

18. Since "cidarefimplcpp.exe" was left running, all items should have Good quality with values ramping
every second. The exception will be the Boolean tags (which will toggle) and the String/String Array
tags (which will display an empty string).

Channel Diagnostics
Channel Diagnostics are available to help users troubleshoot CID and CIDA issues. Prior to performing any
function on shared memory, the CID will output a TX diagnostic frame detailing the nature of the function.
Upon completion, the CID will output an RX diagnostic frame detailing the results of the function. Channel
Diagnostics must be enabled in order to view these diagnostic frames. For more information, refer to
"Channel Diagnostics" in the OPC server's help file.

A code has been defined for each function and is derived from the following bit field. For more information
on specific function codes, refer to the Read and Write Transaction Frames below.

Bit 8 (Read/Write) Bit 7 (Get/Set) Bits 0-6 (Function Type)
0 (Read)
1 (Write)

0 (Get)
1 (Set)

0 (Reserved)
1 (Request Pending)
2 (Response Pending)
3 (Request)
4 (Response)

The shared memory interface functions in the CID return a code to denote the success or failure of that
function.

Shared Memory
Return Code (SMRC) Definition

0 No Error

1 Invalid byte offset specified and/or Register corrupt.

2 For reads, REGISTER.ReadOffset is 0.
For writes, REGISTER.WriteOffset is 0.

3 Register DATA does not have a valid VALTYPE specified.

www.kepware.com

33

Custom Interface Driver

Read Transaction Frames
The possible read transaction frames that can be exchanged are as follows.

Set Read Request (0x43)
Request a read of the register at the specified offset.

TX:

Function 1 Byte 0x43

Register Byte Offset 4 Bytes 0-2,147,483,647

RX:

Function 1 Byte 0x43

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte *

*Refer to Shared Memory Return Code table above.

Get Read Response Pending (0x02)
Determine if a read response is available. If Pending Flag is not set in the defined timeout period, this read
attempt will be considered failed. It will retry according to the attempt count. For more information, refer to
"Device Properties - Timing" page in the OPC server's help file.

TX:

Function 1 Byte 0x02

Register Byte Offset 4 Bytes 0-2,147,483,647

RX:

Function 1 Byte 0x02

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte *

Pending Flag 2 Bytes 0 (False) or 1 (True)

*Refer to Shared Memory Return Code table above.

Get Read Response Data Block (0x04)
Response from the last read request to the register at the specified offset.

TX:

Function 1 Byte 0x04

Register Byte Offset 4 Bytes 0-2,147,483,647

RX:
Function 1 Byte 0x04

www.kepware.com

34

Custom Interface Driver

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte *

Data x Bytes Read DATA structure of size x bytes

*Refer to Shared Memory Return Code table above.

Set Read Request Pending (0x41)
Used to clear the read request that timed out. This will prevent the CIDA from servicing the request at a later
time.

TX:

Function 1 Byte 0x41

Register Byte Offset 4 Bytes 0-2,147,483,647

Pending Flag 2 Bytes 0 (False) or 1 (True)

RX:
Function 1 Byte 0x41

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte *

*Refer to Shared Memory Return Code table above.

Set Read Response Pending (0x42)
Used to clear the read response when the last read request timed out. This will prevent a new request from
potentially using an old response.

TX:

Function 1 Byte 0x42

Register Byte Offset 4 Bytes 0-2,147,483,647

Pending Flag 2 Bytes 0 (False) or 1 (True)

RX:
Function 1 Byte 0x42

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte *

*Refer to Shared Memory Return Code table above.

Write Transaction Frames
The possible write transaction frames that can be exchanged in the Channel Diagnostics window are as
follows.

Get Write Request Pending (0x81)
Determine if the last write request has been processed.

TX:

www.kepware.com

35

Custom Interface Driver

Function 1 Byte 0x81

Register Byte Offset 4 Bytes 0-2,147,483,647

RX:
Function 1 Byte 0x81

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte *

Pending Flag 2 Bytes 0 (False) or 1 (True)

*Refer to Shared Memory Return Code table above.

Set Write Request (0xC3)
Request a write to the register at the specified offset.

TX:

Function 1 Byte 0xC3

Register Byte Offset 4 Bytes 0-2,147,483,647

DATA.Quality 2 Bytes *

DATA.Timestamp 8 Bytes *

Value Size 4 Bytes Number of ASCII bytes to follow

Value x Bytes Value in ASCII form

*Refer to DATA Structure.

RX:
Function 1 Byte 0xC3

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte **

**Refer to Shared Memory Return Code table above.

Get Write Response Pending (0x82)
Determine if a write response is available. If Pending Flag is not set in the defined timeout period, this write
attempt will be considered failed. It will retry according to the attempt count. For more information, refer to
"Device Properties - Timing" page in the OPC server's help file.

TX:

Function 1 Byte 0x82

Register Byte Offset 4 Bytes 0-2,147,483,647

RX:
Function 1 Byte 0x82

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte *

Pending Flag 2 Bytes 0 (False) or 1 (True)

www.kepware.com

36

Custom Interface Driver

*Refer to Shared Memory Return Code table above.

Get Write Response (0x84)
Response from the last write request to the register at the specified offset.

TX:

Function 1 Byte 0x84

Register Byte Offset 4 Bytes 0-2,147,483,647

RX:
Function 1 Byte 0x84

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte *

STATUS.Error 1 Byte 0 (False) or 1 (True)

DATA.ErrorCode 4 Bytes CIDA/Device Specific

DATA.Quality 2 Bytes **

DATA.Timestamp 8 Bytes **

*Refer to Shared Memory Return Code table above.
**Refer to DATA Structure.

Set Write Request Pending (0xC1)
Used to clear the write request that timed out. This will prevent the CIDA from servicing the request at a
later time.

TX:

Function 1 Byte 0xC1

Register Byte Offset 4 Bytes 0-2,147,483,647

Pending Flag 2 Bytes 0 (False) or 1 (True)

RX:
Function 1 Byte 0xC1

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte *

*Refer to Shared Memory Return Code table above.

Set Write Response Pending (0xC2)
Used to clear the write response when the last write request timed out. This will prevent a new request from
potentially using an old response.

TX:

Function 1 Byte 0xC2

Register Byte Offset 4 Bytes 0-2,147,483,647

Pending Flag 2 Bytes 0 (False) or 1 (True)

www.kepware.com

37

Custom Interface Driver

RX:
Function 1 Byte 0xC2

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte *

*Refer to Shared Memory Return Code table above.

Channel Diagnostics
Channel Diagnostics are available to help users troubleshoot CID and CIDA issues. Prior to performing any
function on shared memory, the CID will output a TX diagnostic frame detailing the nature of the function.
Upon completion, the CID will output an RX diagnostic frame detailing the results of the function. Channel
Diagnostics must be enabled in order to view these diagnostic frames. For more information, refer to
"Channel Diagnostics" in the OPC server's help file.

A code has been defined for each function and is derived from the following bit field. For more information
on specific function codes, refer to the Read and Write Transaction Frames below.

Bit 8 (Read/Write) Bit 7 (Get/Set) Bits 0-6 (Function Type)
0 (Read)
1 (Write)

0 (Get)
1 (Set)

0 (Reserved)
1 (Request Pending)
2 (Response Pending)
3 (Request)
4 (Response)

The shared memory interface functions in the CID return a code to denote the success or failure of that
function.

Shared Memory
Return Code (SMRC) Definition

0 No Error

1 Invalid byte offset specified and/or Register corrupt.

2 For reads, REGISTER.ReadOffset is 0.
For writes, REGISTER.WriteOffset is 0.

3 Register DATA does not have a valid VALTYPE specified.

Read Transaction Frames
The possible read transaction frames that can be exchanged are as follows.

Set Read Request (0x43)
Request a read of the register at the specified offset.

TX:

Function 1 Byte 0x43

Register Byte Offset 4 Bytes 0-2,147,483,647

RX:

www.kepware.com

38

Custom Interface Driver

Function 1 Byte 0x43

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte *

*Refer to Shared Memory Return Code table above.

Get Read Response Pending (0x02)
Determine if a read response is available. If Pending Flag is not set in the defined timeout period, this read
attempt will be considered failed. It will retry according to the attempt count. For more information, refer to
"Device Properties - Timing" page in the OPC server's help file.

TX:

Function 1 Byte 0x02

Register Byte Offset 4 Bytes 0-2,147,483,647

RX:

Function 1 Byte 0x02

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte *

Pending Flag 2 Bytes 0 (False) or 1 (True)

*Refer to Shared Memory Return Code table above.

Get Read Response Data Block (0x04)
Response from the last read request to the register at the specified offset.

TX:

Function 1 Byte 0x04

Register Byte Offset 4 Bytes 0-2,147,483,647

RX:
Function 1 Byte 0x04

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte *

Data x Bytes Read DATA structure of size x bytes

*Refer to Shared Memory Return Code table above.

Set Read Request Pending (0x41)
Used to clear the read request that timed out. This will prevent the CIDA from servicing the request at a later
time.

TX:

Function 1 Byte 0x41

www.kepware.com

39

Custom Interface Driver

Register Byte Offset 4 Bytes 0-2,147,483,647

Pending Flag 2 Bytes 0 (False) or 1 (True)

RX:
Function 1 Byte 0x41

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte *

*Refer to Shared Memory Return Code table above.

Set Read Response Pending (0x42)
Used to clear the read response when the last read request timed out. This will prevent a new request from
potentially using an old response.

TX:

Function 1 Byte 0x42

Register Byte Offset 4 Bytes 0-2,147,483,647

Pending Flag 2 Bytes 0 (False) or 1 (True)

RX:
Function 1 Byte 0x42

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte *

*Refer to Shared Memory Return Code table above.

Write Transaction Frames
The possible write transaction frames that can be exchanged in the Channel Diagnostics window are as
follows.

Get Write Request Pending (0x81)
Determine if the last write request has been processed.

TX:

Function 1 Byte 0x81

Register Byte Offset 4 Bytes 0-2,147,483,647

RX:
Function 1 Byte 0x81

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte *

Pending Flag 2 Bytes 0 (False) or 1 (True)

*Refer to Shared Memory Return Code table above.

Set Write Request (0xC3)
Request a write to the register at the specified offset.

www.kepware.com

40

Custom Interface Driver

TX:

Function 1 Byte 0xC3

Register Byte Offset 4 Bytes 0-2,147,483,647

DATA.Quality 2 Bytes *

DATA.Timestamp 8 Bytes *

Value Size 4 Bytes Number of ASCII bytes to follow

Value x Bytes Value in ASCII form

*Refer to DATA Structure.

RX:
Function 1 Byte 0xC3

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte **

**Refer to Shared Memory Return Code table above.

Get Write Response Pending (0x82)
Determine if a write response is available. If Pending Flag is not set in the defined timeout period, this write
attempt will be considered failed. It will retry according to the attempt count. For more information, refer to
"Device Properties - Timing" page in the OPC server's help file.

TX:

Function 1 Byte 0x82

Register Byte Offset 4 Bytes 0-2,147,483,647

RX:
Function 1 Byte 0x82

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte *

Pending Flag 2 Bytes 0 (False) or 1 (True)

*Refer to Shared Memory Return Code table above.

Get Write Response (0x84)
Response from the last write request to the register at the specified offset.

TX:

Function 1 Byte 0x84

Register Byte Offset 4 Bytes 0-2,147,483,647

RX:
Function 1 Byte 0x84

Register Byte Offset 4 Bytes 0-2,147,483,647

www.kepware.com

41

Custom Interface Driver

SMRC 1 Byte *

STATUS.Error 1 Byte 0 (False) or 1 (True)

DATA.ErrorCode 4 Bytes CIDA/Device Specific

DATA.Quality 2 Bytes **

DATA.Timestamp 8 Bytes **

*Refer to Shared Memory Return Code table above.
**Refer to DATA Structure.

Set Write Request Pending (0xC1)
Used to clear the write request that timed out. This will prevent the CIDA from servicing the request at a
later time.

TX:

Function 1 Byte 0xC1

Register Byte Offset 4 Bytes 0-2,147,483,647

Pending Flag 2 Bytes 0 (False) or 1 (True)

RX:
Function 1 Byte 0xC1

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte *

*Refer to Shared Memory Return Code table above.

Set Write Response Pending (0xC2)
Used to clear the write response when the last write request timed out. This will prevent a new request from
potentially using an old response.

TX:

Function 1 Byte 0xC2

Register Byte Offset 4 Bytes 0-2,147,483,647

Pending Flag 2 Bytes 0 (False) or 1 (True)

RX:
Function 1 Byte 0xC2

Register Byte Offset 4 Bytes 0-2,147,483,647

SMRC 1 Byte *

*Refer to Shared Memory Return Code table above.

www.kepware.com

42

Custom Interface Driver

Index

A

Address Descriptions 16

Advanced Channel Properties 7

Automatic Device/Tag Generation 17

C

Cannot open shared memory file associated with configuration <configuration name>. 18

Channel Assignment 10

Channel Configuration 7

Channel Diagnostics 33, 38

Channel Properties - General 5

Channel Properties - Write Optimizations 6

Channel Setup 4

CID/CIDA Reference Implementation Demonstration 32

CIDA Overview 23

CIDA Requirements 23

D

Data Collection 11

DATA Structure 26

Data Types Description 14

Demote on Failure 12

Demotion Period 12

Description 10

Developer Information 23

Device Configuration 13

Device Properties - Auto-Demotion 12

Device Properties - General 10

Device Setup 10

Diagnostics 5

Discard Requests when Demoted 12

Do Not Scan, Demand Poll Only 12

Driver 5, 10

www.kepware.com

43

Custom Interface Driver

Duty Cycle 6

E

Error Descriptions 18

H

Help Contents 4

I

ID 11

IEEE-754 floating point 7

Initial Updates from Cache 12

M

Model 10

N

Name 10

Non-Normalized Float Handling 7

O

Optimization Method 6

Overview 4

R

Reference Implementation 29

Reference Implementation Architecture 30

REGISTER Structure 26

Request All Data at Scan Rate 12

Request Data No Faster than Scan Rate 12

Respect Client-Specified Scan Rate 12

www.kepware.com

44

Custom Interface Driver

Respect Tag-Specified Scan Rate 12

S

Scan Mode 11

Settings 13

Shared Memory Interface 25

Simulated 11

STRINGARRAY Structure 29

Support Information 8

T

Timeouts to Demote 12

U

Unable to read from register <register offset> on device <device name>. CIDA <CIDA name> returned
error code <error code>. 19

Unable to read from register <register offset> on device <device name>. Register is not configured for
read access. 19

Unable to read from register <register offset> on device <device name>. Register value type is not
configured for read data. 20

Unable to read to register <register offset> on device <device name>. Register corrupted. 19

Unable to write to register <register offset> on device <device name>. CIDA <CIDA name> returned error
code <error code>. 21

Unable to write to register <register offset> on device <device name>. Register corrupted. 21

Unable to write to register <register offset> on device <device name>. Register is not configured for write
access. 20

Unable to write to register <register offset> on device <device name>. Register value type is not
configured for write data. 21

V

VALUE Structure 27

W

Write All Values for All Tags 6

www.kepware.com

45

Custom Interface Driver

Write Only Latest Value for All Tags 6

Write Only Latest Value for Non-Boolean Tags 6

Write Optimizations 6

www.kepware.com

46

	Custom Interface Driver
	Table of Contents
	Custom Interface Driver Help
	Overview
	Channel Setup
	Channel Properties - General
	Channel Properties - Write Optimizations
	Channel Properties - Advanced
	Channel Properties - Configuration
	Channel Properties - Support Information

	Device Setup
	Device Properties - General
	Device Properties - Scan Mode
	Device Properties - Auto-Demotion
	Device Properties - Configuration
	Device Properties - Settings

	Data Types Descriptions
	Address Descriptions
	Automatic Device/Tag Generation
	Error Descriptions
	Cannot open shared memory file associated with configuration <configuration n...
	Unable to read to register <register offset> on device <device name>. Registe...
	Unable to read from register <register offset> on device <device name>. Regis...
	Unable to read from register <register offset> on device <device name>. CIDA ...
	Unable to read from register <register offset> on device <device name>. Regis...
	Unable to write to register <register offset> on device <device name>. Regist...
	Unable to write to register <register offset> on device <device name>. Regist...
	Unable to write to register <register offset> on device <device name>. CIDA <...
	Unable to write to register <register offset> on device <device name>. Regist...

	Developer Information
	CIDA Overview
	CIDA Requirements

	Shared Memory Interface
	REGISTER Structure
	DATA Structure
	VALUE Structure
	STRINGARRAY Structure

	Reference Implementation
	Reference Implementation Architecture
	CID/CIDA Reference Implementation Demonstration

	Channel Diagnostics
	Channel Diagnostics

	Index
	Bookmarks
	Shared_Mem_Ret_Code
	Shared_Mem_Ret_Code

