SattBus Ethernet Driver Help

© 2012 Kepware Technologies

Table of Contents

Table of Contents	2
SattBus Ethernet Driver Help	3
Overview	3
Device Setup	4
Communication Parameters.	4
Settings	5
Bit Ordering for Memory Cells	5
Changing the Local Port Number and Network Adapter Settings	8
Data Types Description 1	1
Address Descriptions	2
Overlapped vs. None-Overlapped Addressing1	2
Error Descriptions	4
Address Validation	4
Address ' <address>' is out of range for the specified device or register</address>	4
Array size is out of range for address ' <address>'</address>	4
Array support is not available for the specified address: ' <address>'</address>	4
Data Type ' <type>' is not valid for device address '<address>'</address></type>	5
Device address ' <address>' contains a syntax error1</address>	5
Device address ' <address>' is not supported by model '<model name="">'</model></address>	5
Device address ' <address>' is Read Only</address>	5
Missing address	5
Device Status Error Messages 1	6
Device ' <device name="">' is not responding1</device>	6
Unable to bind to adapter: ' <adapter name="">' for device '<device name="">'. Connection failed</device></adapter>	6
Unable to write to ' <address>' on device '<device name="">'1</device></address>	6
Index	8

SattBus Ethernet Driver Help

Help version 1.020

CONTENTS

Overview What is the SattBus Ethernet Driver?

Device Setup How do I configure a device for use with this driver?

Data Types Description What data types are supported by this driver?

Address Descriptions How do I address a data location on a device?

Error Descriptions

What error messages are produced by the SattBus Ethernet Driver?

Overview

The SattBus Ethernet Driver provides an easy and reliable way to connect SattBus Ethernet devices to OPC Client applications, including HMI, SCADA, Historian, MES, ERP and countless custom applications. It is intended for use with Sattcon devices communicating via the SattBus Ethernet interface.

Note: A standard Ethernet interface is used as the hardware for connecting PCs to a SattBus system with Ethernet capability.

Device Setup

Supported Devices

Sattcon 200

Note: Any device that supports the SattBus protocol (and has the SattBus Ethernet interface/module present) will be supported.

Communication Protocol

SattBus

Device IDs

The Device ID is the device's IP address.

Connection

Standard Ethernet connection.

Overlapping

Overlapping affects the procedure of reading and writing certain addresses. By default, this is option is set to "Yes" for compatibility with the SattBus Serial port driver. For more information, refer to **Overlapped Address**ing vs. None-Overlapped Addressing.

Communication Parameters

These parameters specify the device's protocol and port numbers.

New Device - Communication	ons Parameters	x
	Set the protocol type and the used port numbers for this device. Make sure no other device on a different channel is configured to use this Local Port/Network Adapter (channel property) pair. Select whether or not dword registers are overlapped. Protocol: Overlapped addressing: Yes Write to: 2999	
	< <u>B</u> ack <u>N</u> ext > Cancel	Help

Descriptions of the parameters are as follows:

- **Protocol:** This parameter specifies the protocol type. The only protocol used for SattBus over Ethernet is UDP.
- **Overlapped Addressing:** This parameter specifies the addressing of register double-words. The default setting is Yes. For more information, refer to **Overlapped vs. None-Overlapped Addressing**.
- Local: This parameter specifies the local port number to which the device will send messages. The default setting is 2999.

• Write To: This parameter specifies the port number on which the device will receive messages. The default setting is 2999.

Note: Although the driver supports the configuration of communication port numbers, the actual port numbers that the Sattbus device expects for successful communication are fixed. In order to communicate with the Sattbus device, both the Local and Write To port numbers must be 2999.

Settings

New Device - Settings	×
	Select the bit ordering to use when reading/writing 16 bit memory cell tags. Block size refers to the number of bytes of data that may be received in a single request. Refer the help file for details. Select bit ordering for 16 bit memory cell tags (M, MW, XW): MSBit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10 LSBit Block size Register Block Size: 20 L/O RAM/Memory Cell Block Size: 20
	< <u>B</u> ack <u>N</u> ext > Cancel Help

Descriptions of the parameters are as follows:

- Select Bit Ordering for 16 Bit Memory Cell Tags (M, MW, XW): These parameters configure the bit ordering that will be used when reading or writing Word memory cell tags. The default setting is MSBit 7| 6| 5| 4| 3| 2| 1| 0| 15| 14| 13| 12| 11| 10| 9| 8 LSBit.
- **Register Block Size:** This parameter specifies the number of bytes of Register data (such as R tags) that may be requested from a device at one time. To refine the driver's performance, configure the block size to one of the following settings: 20, 32, 64, 128, 256, or 510. The default setting is 20 bytes.
- I/O RAM/Memory Cell Block Size: This parameter specifies the number of bytes of I/O RAM/Memory Cell data (such as X, XB, XW, M, MW, I, O or IO tags) that may be requested from a device at one time. To refine the driver's performance, configure the block size to one of the following settings: 20, 32, 64, 128, or 255. The default setting is 20 bytes.

Bit Ordering for Memory Cells

For more information on a selection, select a link from the list below.

 MSBit 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 11| 12| 13| 14| 15 LSBit

 MSBit 15| 14| 13| 12| 11| 10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0 LSBit

 MSBit 7| 6| 5| 4| 3| 2| 1| 0| 15| 14| 13| 12| 11| 10| 9| 8 LSBit

Note: Addresses are in octal.

MSBit 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 11| 12| 13| 14| 15 LSBit

This is how the DOX10 programming software represents the memory cells. In this condition, the most significant bit (MSBit) of the tag being read or written is equal to the address of the tag.

1. For the Word tag 'MW00' (address '0'), the most significant bit (MSBit) is the memory cell address '0'. The least significant bit (LSBit) is memory cell address '17' as shown below:

<					M	W0	0					>	•				
MSBit	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17	LSBit

Read

If memory addresses '2' and '13' are ON, and rest all are OFF as shown below:

<						MW	00						>				
State	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	=>16416
MSBit	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17	LSBit

then the value that the tag 'MW00' will read is: 16416.

Write

Writing a value '1' to the tag 'MW00', will set the bit memory addresses as shown below:

<					M	WO	0					>	,				
State	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	=>1
MSBit	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17	LSBit

2. For the Word tag 'MW11'*(address '11'), the most significant bit (MSBit) is the memory bit '11'. The least significant bit (LSBit) is memory bit '31' as shown below:

Note: Word access at non-byte boundaries is not allowed in the DOX10 programming software.

<					· MW	/11						>					
MSBit	11	12	13	14	15	16	17	20	21	22	23	25	26	27	30	31	LSBit

Read

If memory addresses '14' and '27' are ON, and rest all are OFF as shown below:

<					- MV	V11						>					
State	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	=>4100
MSBit	11	12	13	14	15	16	17	20	21	22	23	25	26	27	30	31	LSBit

then the value that the tag 'MW11' will read is: 4100.

Write

Writing a value '258' to the tag 'MW11', will set the bit memory addresses as shown below:

<					- MV	V11						>					
State	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	=>258
MSBit	11	12	13	14	15	16	17	20	21	22	23	25	26	27	30	31	LSBit

Note: Due to the nature of this bit ordering option, care is needed when addressing 8-bit memory that is close to 16-bit addresses.

MSBit 15| 14| 13| 12| 11| 10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0 LSBit

In this condition, the least significant bit (LSBit) of the tag being read or written is equal to the address of the tag.

1. For the Word tag 'MW00' (address '0'), the most significant bit (MSBit) is the memory cell address '17'. The least significant bit (LSBit) is memory cell address '0' as shown below:

<					ľ	NW	00 -					;	>				
LSBit	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17	MSBit

Read

If memory addresses '2' and '13' are ON, and rest all are OFF as shown below:

<						MW	/00						>				
State	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	=>2052
LSBit	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17	MSBit

then the value that the tag 'MW00' will read is: 2052.

Write

Writing a value '1' to the tag 'MW00', will set the bit memory addresses as shown below:

<					M	4W(00 -					>	>				
State	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	=>1
LSBit	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17	MSBit

2. For the Word tag 'MW11'(address '11'), the most significant bit (MSBit) is the memory bit '31'. The least significant bit (LSBit) is memory bit '11' as shown below:

Note: Word access at non-byte boundaries is not allowed in the DOX10 programming software.

<					- MV	V11						>					
LSBit	11	12	13	14	15	16	17	20	21	22	23	25	26	27	30	31	MSBit

Read

If memory addresses '14' and '27' are ON, and rest all are OFF as shown below:

<					- M\	N11						>					
State	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	=>8200
LSBit	11	12	13	14	15	16	17	20	21	22	23	25	26	27	30	31	MSBit

then the value that the tag 'MW11' will read is: 8200.

Write

Writing a value '258' to the tag 'MW11', will set the bit memory addresses as shown below:

<					- MV	V11						>					
State	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	=>258
LSBit	11	12	13	14	15	16	17	20	21	22	23	25	26	27	30	31	MSBit

MSBit 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 LSBit

This condition, which is the default, is similar to the second selection described above, but with the bytes swapped.

1. For the Word tag 'MW00' (address '0'), the most significant bit (MSBit) is the memory cell address '7'. The least significant bit (LSBit) is memory cell address '10' as shown below:

<				M	1W00)					>	>					
LSBit	10	11	12	13	14	15	16	17	0	1	2	3	4	5	6	7	MSBit

Read

If memory addresses '2' and '13' are ON, and rest all are OFF as shown below:

<					MWO	0						->					
State	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	=>1032
LSBit	10	11	12	13	14	15	16	17	0	1	2	3	4	5	6	7	MSBit

then the value that the tag 'MW00' will read is: 1032.

Write

Writing a value '1' to the tag 'MW00', will set the bit memory addresses as shown below:

<----> MW00 ----->

State	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	=>1
LSBit	10	11	12	13	14	15	16	17	0	1	2	3	4	5	6	7	MSBit

2. For the Word tag 'MW11'*(address '11'), the most significant bit (MSBit) is the memory bit '20'. The least significant bit (LSBit) is memory bit '21' as shown below:

Note: Word access at non-byte boundaries is not allowed in the DOX10 programming software.

<					- MV	V11						>					
LSBit	21	22	23	25	26	27	30	31	11	12	13	14	15	16	17	20	MSBit

Read

If memory addresses '14' and '27' are ON, and rest all are OFF as shown below:

<					- M\	N11						>					
State	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	=>2080
LSBit	21	22	23	25	26	27	30	31	11	12	13	14	15	16	17	20	MSBit

then the value that the tag 'MW11' will read is: 2080.

Write

Writing a value '258' to the tag 'MW11', will set the bit memory addresses as shown below:

<					- MV	V11						>					
State	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	=>258
LSBit	21	22	23	25	26	27	30	31	11	12	13	14	15	16	17	20	MSBit

Note: Due to the nature of this bit ordering option, care is needed when addressing 8-bit memory that is close to 16-bit addresses.

Changing the Local Port Number and Network Adapter Settings

For information on changing the Local Port Number and the Network Adapter settings, refer to the instructions below.

Changing the Local Port Number Setting

- 1. To start, right-click on the device and then select **Properties**.
- 2. Next, click on the Communication Parameters tab and refer to the Local Port Number field.
- 3. Make changes to the setting as desired.

Device Properties	×
General Scan Mode T Redundancy Communications	Timing Auto-Demotion s Parameters Settings
Protocol: Local Port Number*: Write to Port Number: Overlapped addressing *Note: Make sure no other dev channel is configured to use th Port/Network Adapter (channel	is Local
OK Cancel	Apply Help

Caution: Some SattBus Ethernet modules are configured to send responses to a fixed, predefined port number (such as 2999) on the PC. As such, when the local port number is changed, the bind may succeed although the actual communications fail.

Changing the Network Adapter Setting

- 1. To start, right-click on the channel and then select **Properties**.
- 2. Next, click on the **Network Interfaces** tab and refer to the **Network Adapter** field.

Channel P	Properties	
General	Network Interface Write Optimizations	
	Network Adapter:	
	Default	
0	K Cancel Apply Help	

Note: If only a single Network Interface Card (NIC) is in the machine, users will have to multi-home the PC. Once completed, the "Default" adapter should not be selected for any of the other channels.

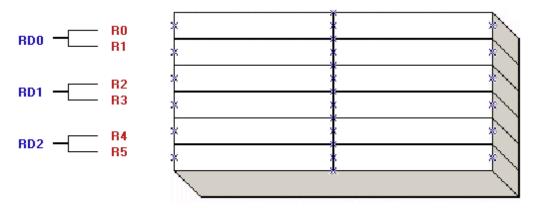
Data Types Description

Data Type	Description	
Boolean	Single bit	
Byte	Unsigned 8 bit value	
,		
	bit 0 is the low bit	
	bit 7 is the high bit	
Char	Signed 8 bit value	
	bit 0 is the low bit	
	bit 6 is the high bit	
	bit 7 is the sign bit	
Word	Unsigned 16 bit value	
	byte 0 is the high byte	
	byte 1 is the low byte	
Short	Signed 16 bit value	
	bute 0 is the bigh bute	
	byte 0 is the high byte byte 1 is the low byte	
	bit 0 is the sign bit	
DWord	Unsigned 32 bit value	
Dworu	Unsigned 52 bit value	
	byte 0 is the high byte	
	byte 7 is the low byte	
Long	Signed 32 bit value	
	byte 0 is the high byte	
	byte 7 is the low byte	
	bit 0 is the sign bit	

Address Descriptions

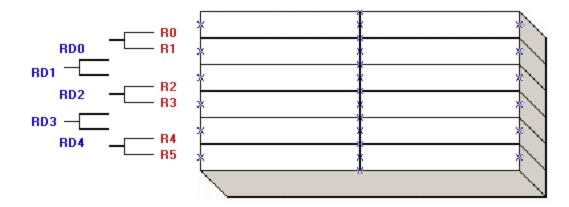
Address Type	Range	Data Type	Access
Register.	R0-R32767	Word, Short	Read/Write
	R0.00-R32767.00 R0.15-R32767.15	Boolean	Read Only
Addresses are in decimal.	RW0-RW32767	Word, Short	Read/Write
	RW0.00-RW32767.00 RW0.15-RW32767.15	Boolean	Read Only
	RD0-RD32766**	DWord, Long	Read/Write
I/O RAM bits.	0-77777	Boolean	Read/Write
	IO0-IO77777	Boolean	
Addresses are in octal.	I0-I77777	Boolean	
	00-077777	Boolean	
	X0-X77777	Boolean	
I/O RAM.	XB0-XB77770	Byte, Char	Read/Write
	XW0.00-XW77760.00 XW0.15-XW77760.15	-	
Addresses are in octal; bit	XW0-XW77760	Boolean	
numbers are in decimal.*			
		Word, Short	
Memory Cell in I/O RAM.	M0-M77760	Word, Short	Read/Write
	M0.00-M77760.00 M0.15-M77760.15	Boolean	
Bit numbers are in decimal.	MW0-MW77760	Word, Short	
	MW0.00-MW77760.00 MW0.15-MW77760.15	Boolean	

The default data types for dynamically defined tags are shown in **bold**.


*Addresses can be on non-byte boundary (non-multiples of 10 octal). **For more information, refer to **Overlapped Vs. None-Overlapped Addressing**.

Overlapped vs. None-Overlapped Addressing

This device setting influences the addressing of register double-words. By default, the driver is set to Overlapped Mode for compatibility with the SattBus Serial driver.


None-Overlapped Mode

In None-Overlapped Mode, RD1 starts with the byte following the second byte of RD0.

Overlapped Mode

In Overlapped Mode, the byte address matches the first byte of the double word. For example, RD3 is the first byte of double word RD3.

Error Descriptions

The following error/warning messages may be generated. Click on the link for a description of the message.

Address Validation

Address '<address>' is out of range for the specified device or register Array size is out of range for address '<address>' Array support is not available for the specified address: '<address>' Data Type '<type>' is not valid for device address '<address>' Device address '<address>' contains a syntax error Device address '<address>' is not supported by model '<model name>' Device address '<address>' is Read Only Missing address

Device Status Messages

Device '<device name>' is not responding Unable to bind to adapter: '<adapter name>' for device '<device name>'. Connection failed Unable to write to '<address>' on device '<device name>'

Address Validation

The following error/warning messages may be generated. Click on the link for a description of the message.

Address Validation

Address '<address>' is out of range for the specified device or register Array size is out of range for address '<address>' Array support is not available for the specified address: '<address>' Data Type '<type>' is not valid for device address '<address>' Device address '<address>' contains a syntax error Device address '<address>' is not supported by model '<model name>' Device address '<address>' is Read Only Missing address

Address '<address>' is out of range for the specified device or register

Error Type: Warning

Possible Cause:

A tag address that has been specified statically references a location that is beyond the range of supported locations for the device.

Solution:

Verify the address is correct; if it is not, re-enter it in the client application.

Array size is out of range for address '<address>'

Error Type:

Warning

Possible Cause:

A tag address that has been specified statically is requesting an array size that is too large for the address type or block size of the driver.

Solution:

Re-enter the address in the client application to specify a smaller value for the array or a different starting point.

Array support is not available for the specified address: '<address>'

Error Type: Warning

Possible Cause:

A tag address that has been specified statically contains an array reference for an address type that doesn't support arrays.

Solution:

Re-enter the address in the client application to remove the array reference or correct the address type.

Data Type '<type>' is not valid for device address '<address>'

Error Type:

Warning

Possible Cause:

A tag address that has been specified statically has been assigned an invalid data type.

Solution:

Modify the requested data type in the client application.

Device address '<address>' contains a syntax error

Error Type:

Warning

Possible Cause:

A tag address that has been specified statically contains one or more invalid characters.

Solution:

Re-enter the address in the client application.

Device address '<address>' is not supported by model '<model name>'

Error Type:

Warning

Possible Cause:

A tag address that has been specified statically references a location that is valid for the communications protocol but not supported by the target device.

Solution:

Verify that the address is correct; if it is not, re-enter it in the client application. Also verify that the selected model name for the device is correct.

Device address '<address>' is Read Only

Error Type:

Warning

Possible Cause:

A tag address that has been specified statically has a requested access mode that is not compatible with what the device supports for that address.

Solution:

Change the access mode in the client application.

Missing address

Error Type: Warning

Possible Cause:

A tag address that has been specified statically has no length.

Solution:

Re-enter the address in the client application.

15

Device Status Error Messages

The following error/warning messages may be generated. Click on the link for a description of the message.

Device Status Messages

Device '<device name>' is not responding Unable to bind to adapter: '<adapter name>' for device '<device name>'. Connection failed Unable to write to '<address>' on device '<device name>'

Device '<device name>' is not responding

Error Type:

Serious

Possible Cause:

1. The Ethernet connection between the device and the Host PC is broken.

- 2. The named device may have been assigned an incorrect Network ID.
- 3. The communication parameters for the Ethernet connection are incorrect.
- 4. The Ethernet configuration for the LAN adapter is incorrect.

5. The response from the device took longer to receive than the amount of time specified in the "Request Timeout" device setting.

Solution:

1. Verify the cabling between the PC and the device.

2. Verify that the Network ID given to the named device matches that of the actual device.

3. Verify that the specified communication parameters match those of the device.

4. Verify that the LAN adapter is correctly configured: that the device driver functions properly, the TCP/IP pro-

tocol is installed and that the PLC has a valid IP address.

5. Increase the Request Timeout setting so that the entire response can be handled.

Unable to bind to adapter: '<adapter name>' for device '<device name>'. Connection failed

Error Type:

Fatal

Possible Cause:

Some other device in the driver has already been bound to the adapter/port combination.

Solution:

Change the adapter/port combination so that it is unique.

Note:

In order for the device to successfully bind to the local adapter, the combination of adapter and local port number must be unique.

See Also:

Changing the Local Port Number and Network Adapter Settings

Unable to write to '<address>' on device '<device name>'

Error Type:

Serious

Possible Cause:

- 1. The Ethernet connection between the device and the Host PC is broken.
- 2. The named device may have been assigned an incorrect Network ID.
- 3. The communication parameters for the Ethernet connection are incorrect.
- 4. The Ethernet configuration for the LAN adapter incorrect.

Solution:

- 1. Verify the cabling between the PC and the device.
- 2. Verify that the Network ID given to the named device matches that of the actual device.
- 3. Verify that the specified communication parameters match those of the device.

4. Verify that the LAN adapter is correctly configured: that the device driver functions properly, the TCP/IP protocol is installed and that the PLC has a valid IP address.

Index

A

Address ' <address>' is out of range for the specified device or register</address>	14
Address Descriptions	12
Address Validation	14
Array size is out of range for address ' <address>'</address>	14
Array support is not available for the specified address: ' <address>'</address>	14

В

Bit Ordering for Memory Cells	. 5
Boolean	11

С

Changing the Local Port Number and Network Adapter Settings	8
Communication Parameters	. 4

D

Data Type ' <type>' is not valid for device address '<address>'</address></type>	
Data Types Description	11
Device ' <device name="">' is not responding</device>	
Device address ' <address>' contains a syntax error</address>	15
Device address ' <address>' is not supported by model '<model name="">.'</model></address>	
Device address ' <address>' is Read Only</address>	
Device ID.	4
Device Setup	4
Device Status Error Messages	16
DWord	11

Ε

Error Descriptions	
н	
Help Contents	
L	
Long	
Μ	
Missing address	

0

Overlapped vs. None-overlapped addressing	12
Overview	3

S

Settings	5
Short	11

U

Unable to bind to adapter: ' <adapter name="">' for device '<device name="">'. Connection failed 16</device></adapter>	
Unable to write tag ' <address>' on device '<device name="">'</device></address>	

W

Word	11
------	----

20