Yokogawa Darwin Serial Driver

© 2016 PTC Inc. All Rights Reserved.

Table of Contents

Yokogawa Darwin Serial Driver	1
Table of Contents	2
Yokogawa Darwin Serial Driver Help	4
Overview	4
Device Setup	5
Modem Setup	5
Communications Properties	7
Data Types Description	9
Address Descriptions	10
DA100-1 Addressing	10
DA100-2 Addressing	12
DR130 Addressing	14
DR231 Addressing	16
DR232 Addressing	19
DR241 Addressing	21
DR242 Addressing	23
DC100-1 Addressing	25
DC100-2 Addressing	
Automatic Tag Database Generation	30
Error Descriptions	
Address Validation	
Address ' <address>' is out of range for the specified device or register</address>	34
Data Type ' <type>' is not valid for device address '<address>'</address></type>	35
Device address ' <address>' contains a syntax error</address>	35
Device address ' <address>' is Read Only</address>	35
Missing address	35
The device ' <device name="">' responded with a NAK to a read request starting at address '<address>'. The requested address may not exist in the device</address></device>	35
Serial Communications	
Communications error on ' <channel name="">' [<error mask="">]</error></channel>	
COMn does not exist	36
COMn is in use by another application	37
Error opening COMn	37
Unable to set comm properties on COMn	37
Device Status Messages	37
Device ' <device name="">' is not responding</device>	37

	Unable to write to ' <address>' on device '<device name<="" th=""><th>>'38</th></device></address>	>'38
Ind	dex	39

Yokogawa Darwin Serial Driver Help

Help version 1.018

CONTENTS

Overview

What is the Yokogawa Darwin Serial Driver?

Device Setup

How do I configure a device for use with this driver?

Data Types Description

What data types does this driver support?

Address Descriptions

How do I address a data location on a Yokogawa Darwin Serial device?

Automatic Tag Database Generation

How can I easily configure tags for the Yokogawa Darwin Serial Driver?

Error Descriptions

What error messages does the Yokogawa Darwin Serial Driver produce?

Overview

The Yokogawa Darwin Serial Driver provides an easy and reliable way to connect Yokogawa Darwin Serial devices to OPC Client applications, including HMI, SCADA, Historian, MES, ERP and countless custom applications. It is intended for use with Yokogawa Data Acquisition and Data Recorder devices that support RS-232 and RS-422 communications.

Device Setup

Supported Yokogawa Devices

DA100-1

DA100-2

DR231

DR232

DR241

DR242

DC100-1

DC100-2

Supported Communication Properties

Baud Rate: 300, 600, 1200, 2400, 9600, 19200, 38400, 56000, 57600, 115200, 128000, or 256000.

Parity: None, Even, or Odd. Data Bits: 5, 6, 7, or 8 Stop Bits: 1 or 2.

Flow Control: None, DTR, RTS, RTS.DTR, RTS Always

Note 1: Software handshaking is not available.

Note 2: This driver makes use of binary data formatting when reading information from Yokogawa devices. This requires that data bit setting 8 be used.

RS-232 and RS-422/485 Operation

Yokogawa Darwin devices can support RS-232 or RS-422/485 operation. The mode that is used depends on the configuration of the OPC server project.

If intending to connect to a Darwin device using RS-232, select a Device ID of zero (0). This tells the driver to use the RS-232 mode for communications. If intending to use either RS-422 or RS-485 communications, select a Device ID for each station that is between 1 and 16 for RS-422, and between 1 and 31 for RS-485. When using RS-232, only configure one device on the channel.

Request Timeout

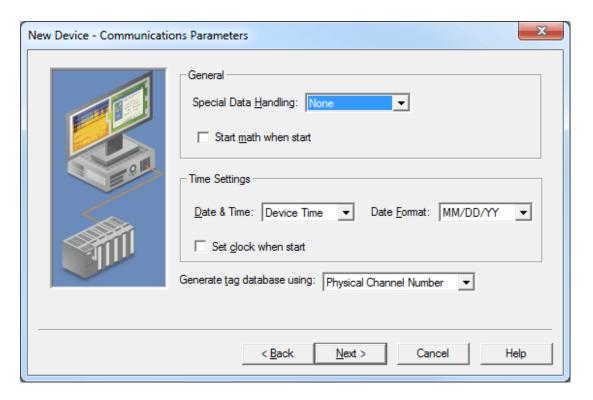
This property specifies the amount of time that the driver will wait for a response from the device before giving up and going on to the next request. Long timeouts will only affect performance if a device is not responding. The valid range is 100 to 30000 milliseconds. The default setting is 5000 milliseconds.

Retry Attempts

This property specifies the number of times that the driver will retry a message before giving up and going on to the next message. The valid range is 1 to 10. The default setting is 3.

Note: For more information, refer to the OPC server's help documentation.

Device ID


When operating in RS-232 mode, the Device ID has no meaning for this driver. When the driver is operating in the RS-422 mode, the Device ID has a valid range of 1 to 31. The default setting is 1.

See also: Vendor notes.

Modem Setup

This driver supports modem functionality. For more information, please refer to the topic "Modem Support" in the OPC server's help documentation.

Communications Properties

Descriptions of the properties are as follows:

- **Special Data Handling** This property allows the driver to be configured to return specific data values for the numerical out of range and error conditions returned from the device. Options include None, +INF, and -INF. The default setting is None. For more information, refer to **Special Data Handling**.
- **Math on Start:** When enabled, this option will inform the driver to send a command to the device at communication startup that will start the math computation. The default setting is disabled.
- **Date & Time:** This property specifies the origin of the data value of the Date and Time data types (which represent the date and time of the latest data). Options include Device Time and System Time. The default setting is Device Time. Descriptions of the options are as follows:
 - **Device Time:** When selected, the Date and Time tags will return the date and time read from the device. This date and time represents the date and time that the latest data was measured or computed based on the internal device clock.
 - **System Time:** When selected, the Date and Time tags will return the date and time that the requested data was returned from the device based on the PC system clock.
- **Date Format:** This property specifies the format of the return string for the Date data type. Date formats can be specified as MM/DD/YY (month/day/year), YY/MM/DD (year/month/day), or DD/MM/YY (day/month/year). The default setting is MM/DD/YY.
- **Set Clock on Start:** When enabled, this option informs the driver to send a command to the device at communication startup that will set the device clock to the date and time settings of the system clock. The default setting is disabled.
- **Generate tag database using:** This property specifies the origin of the tag name used when automatically generating a tag database. Options include Physical Channel Number and Device Tagname. The default setting is Physical Channel Number. Descriptions of the options are as follows:

- **Physical Channel Number:** When selected, the driver will generate tag names based on the channel number of an item. For example, "CH001" or "CH001_alarm1".
- **Device Tag name:** When selected, the driver will generate tag names using the tag name returned by the device for a channel. For example, "Flow" or "Flow_alarm1".

Special Data Handling

Special Data Handling specifies how to return specific data values for the numerical out of range and error conditions that are returned from the device. Options include None, +INF, and -INF. Descriptions of the options are as follows:

- **None:** When selected, special data values will be returned with the actual data value received from the device. For example, the data value of a measuring channel Over Range would be returned as 32,767 and the data value of a math channel Over Range would be returned as 2,147,450,879.
- **+INF:** When selected, special data values will be returned as a numerical representation of positive infinity (#INF). The exception is an Under Range condition that is always returned as negative infinity.
- -INF: When selected, special data values will be returned as a numerical representation of negative infinity (-#INF). The exception is an Over Range condition that is always returned as positive infinity.

Data Types Description

Data Type	Description
Boolean	Single bit
Byte	Unsigned 8 bit value
Word	Unsigned 16 bit value
Short	Signed 16 bit value
Float	32 bit floating point value
Double	64 bit floating point value
String	Null terminated ASCII string

Address Descriptions

Address specifications vary depending on the model in use. Select a link from the following list to obtain specific address information for the model of interest.

DA100-1 Addressing

DA100-2 Addressing

DR130 Addressing

DR231 Addressing

DR232 Addressing

DR241 Addressing

DR242 Addressing

DC100-1 Addressing

DC100-2 Addressing

DA100-1 Addressing

The driver supports the following addresses for this device. The default data type for each address type is shown in **bold**.

Measured Channels

Address Type	Format	Range	Data Types	Access
Process Value of Channel	CHxxx or CHxxx.PV	001-060	Double , Float	Read Only
Alarm Summary of Channel	CHxxx.Alarm	001-060	Short , Word, Byte	Read Only
Alarm Level1 Status of Channel	CHxxx.Alarm1	001-060	Short , Word, Byte	Read Only
Alarm Level2 Status of Channel	CHxxx.Alarm2	001-060	Short , Word, Byte	Read Only
Alarm Level3 Status of Channel	CHxxx.Alarm3	001-060	Short , Word, Byte	Read Only
Alarm Level4 Status of Channel	CHxxx.Alarm4	001-060	Short , Word, Byte	Read Only
Set and Read Level1 Alarm Setpoint	CHxxx.ASP1	001-060	Double , Float	Read/Write
Set and Read Level2 Alarm Setpoint	CHxxx.ASP2	001-060	Double , Float	Read/Write
Set and Read Level3 Alarm Setpoint	CHxxx.ASP3	001-060	Double , Float	Read/Write
Set and Read Level4 Alarm Setpoint	CHxxx.ASP4	001-060	Double , Float	Read/Write
Upper Scale Value of Channel*	CHxxx.scale_Hi	001-060	Double , Float	Read Only
Lower Scale Value of Channel*	CHxxx.scale_Lo	001-060	Double , Float	Read Only
Unit String of Channel*	CHxxx.unit	001-060	String	Read Only
Tagname of Channel*	CHxxx.tag	001-060	String	Read Only
Status of Channel*	CHxxx.status	001-060	String	Read Only
Lowest Measuring Channel*	CH.Low		Short , Word, Byte	Read Only
Highest Measuring Channel*	CH.High		Short , Word, Byte	Read Only

Math Channels

Address Type	Format	Range	Data Types	Access
Process Value of Math Channel	CHAxx or CHAxx.PV	01-30	Double , Float	Read Only
Alarm Summary of Math Channel	CHAxx.Alarm	01-30	Short , Word, Byte	Read Only
Alarm Level1 Status of Math Channel	CHAxx.Alarm1	01-30	Short , Word, Byte	Read Only
Alarm Level2 Status of Math Channel	CHAxx.Alarm2	01-30	Short , Word, Byte	Read Only
Alarm Level3 Status of Math Channel	CHAxx.Alarm3	01-30	Short , Word, Byte	Read Only

Address Type	Format	Range	Data Types	Access
Alarm Level4 Status of Math Channel	CHAxx.Alarm4	01-30	Short , Word, Byte	Read Only
Set and Read Level1 Alarm Setpoint	CHAxx.ASP1	01-30	Double , Float	Read/Write
Set and Read Level2 Alarm Setpoint	CHAxx.ASP2	01-30	Double , Float	Read/Write
Set and Read Level3 Alarm Setpoint	CHAxx.ASP3	01-30	Double , Float	Read/Write
Set and Read Level4 Alarm Setpoint	CHAxx.ASP4	01-30	Double , Float	Read/Write
Upper Scale Value of Math Channel*	CHAxx.scale_Hi	01-30	Double , Float	Read Only
Lower Scale Value of Math Channel*	CHAxx.scale_Lo	01-30	Double , Float	Read Only
Unit String of Math Channel*	CHAxx.unit	01-30	String	Read Only
Tagname of Math Channel*	CHAxx.tag	01-30	String	Read Only
Status of Math Channel*	CHAxx.status	01-30	String	Read Only
Lowest Math Channel*	CHA.Low		Short , Word, Byte	Read Only
Highest Math Channel*	CHA.High		Short , Word, Byte	Read Only

^{*}The data associated with these addresses is only read from the device at the start of a communications session. Once read, the values will not be refreshed until the server has been restarted or the "Reset" tag has been invoked. To invoke a reset, write a non zero value to the Reset tag. Once the Reset tag has been invoked, the driver will reinitialize all startup data from the device.

Alarm Setpoints

Data values for alarm setpoints that are undefined in the device will be returned as +INF. Data values can only be written to alarm setpoints that are defined in the device. Write operations to undefined alarm setpoints will return an error. Alarm setpoint values are read one channel at a time. For devices with a large number of channels, increasing the scan rate of ASP items and/or reducing the number of active ASP items will increase the read performance of the PV and alarm data.

Scales

Data values for Scale_Hi and Scale_Lo for channels that are skipped will be returned as +INF.

Tag Names

For devices that do not support tag names (and channels that have unspecified tag names) the driver will construct an internal tag name based on the channel number. For example, the tag name of address 'CH001' will be returned as 'CH001'.

General Device Data

Address Type	Format	Range	Data Types	Access
Date of Last Data	Date		String	Read Only
Time of Last Data	Time		String	Read Only
Model Name of Device*	Model		String	Read Only
Digital Output (Main Unit)	DOxxx	001-060	Boolean	Read/Write
Digital Output (Internal Switch)	DOSxx	01-60	Boolean	Read/Write
Math Communication Data**	CDxx	01-30	Short, Word, Byte	Write Only
Control Math Execution	MathControl		Short , Word, Byte	Write Only
Reset Alarms	AlarmReset		Boolean	Write Only
Control Command and Response	Command		String	Read/Write
Direct Reloading of Configuration	Reset		Boolean	Write Only

- *The model address type that returns the model name of the device may return 'DR231' for models of type DR241 and 'DR232' for models of type DR242.
- **The CD address type is only valid for devices equipped with the math option. Write operations to CD addresses for non-math equipped devices will return an error. The range of valid data for addresses 'CDxx' is -32000 to 32000. CD data values are converted in the device from a whole number to a real number based on the decimal point placement specified for the associated math channel. For example, the device would interpret a data value of 32000 written to a CD address location with a decimal point placement of .000 as 32.000.

Control Math Execution

The MathControl address type is only available for devices equipped with the math option. Write operations to the MathControl tag for non-math equipped devices will return an error.

Control Command and Response

The Command address allows the user to send a string command and receive a string response to and from the device. This means that any command can be sent to the device, including commands not directly supported by the driver. Write operations using the Command address should be performed with extreme caution.

Notes 1: The actual number of addresses available for of each type depends on the Yokogawa device's configuration. If the driver finds at Runtime that an address is not present in the device, it will post an error message and remove the tag from its scan list.

Notes 2: Addresses that have Write Only access are assigned a default access of Read/Write. Data values are unreadable for these addresses, however, and the associated tags are not included in the scan list. The current data value for these tags will always be 0 for numeric data types and null string for string data types.

DA100-2 Addressing

The driver supports the following addresses for this device. The default data type for each address type is shown in **bold**.

Measured Channels

Address Type	Format	Range	Data Types	Access
Process Value of Channel	CHxxx or CHxxx.PV	001-560	Double , Float	Read Only
Alarm Summary of Channel	CHxxx.Alarm	001-560	Short , Word, Byte	Read Only
Alarm Level1 Status of Channel	CHxxx.Alarm1	001-560	Short , Word, Byte	Read Only
Alarm Level2 Status of Channel	CHxxx.Alarm2	001-560	Short , Word, Byte	Read Only
Alarm Level3 Status of Channel	CHxxx.Alarm3	001-560	Short , Word, Byte	Read Only
Alarm Level4 Status of Channel	CHxxx.Alarm4	001-560	Short , Word, Byte	Read Only
Set and Read Level1 Alarm Setpoint	CHxxx.ASP1	001-560	Double , Float	Read/Write
Set and Read Level2 Alarm Setpoint	CHxxx.ASP2	001-560	Double , Float	Read/Write
Set and Read Level3 Alarm Setpoint	CHxxx.ASP3	001-560	Double , Float	Read/Write
Set and Read Level4 Alarm Setpoint	CHxxx.ASP4	001-560	Double , Float	Read/Write
Upper Scale Value of Channel*	CHxxx.scale_Hi	001-560	Double , Float	Read Only
Lower Scale Value of Channel*	CHxxx.scale_Lo	001-560	Double , Float	Read Only
Unit String of Channel*	CHxxx.unit	001-560	String	Read Only
Tagname of Channel*	CHxxx.tag	001-560	String	Read Only
Status of Channel*	CHxxx.status	001-560	String	Read Only
Lowest Measuring Channel*	CH.Low		Short , Word, Byte	Read Only

Address Type	Format	Range	Data Types	Access
Highest Measuring Channel*	CH.High		Short , Word, Byte	Read Only

Math Channels

Address Type	Format	Range	Data Types	Access
Process Value of Math Channel	CHAxx or CHAxx.PV	01-60	Double , Float	Read Only
Alarm Summary of Math Channel	CHAxx.Alarm	01-60	Short , Word, Byte	Read Only
Alarm Level1 Status of Math Channel	CHAxx.Alarm1	01-60	Short , Word, Byte	Read Only
Alarm Level2 Status of Math Channel	CHAxx.Alarm2	01-60	Short , Word, Byte	Read Only
Alarm Level3 Status of Math Channel	CHAxx.Alarm3	01-60	Short , Word, Byte	Read Only
Alarm Level4 Status of Math Channel	CHAxx.Alarm4	01-60	Short , Word, Byte	Read Only
Set and Read Level1 Alarm Setpoint	CHAxx.ASP1	01-60	Double , Float	Read/Write
Set and Read Level2 Alarm Setpoint	CHAxx.ASP2	01-60	Double , Float	Read/Write
Set and Read Level3 Alarm Setpoint	CHAxx.ASP3	01-60	Double , Float	Read/Write
Set and Read Level4 Alarm Setpoint	CHAxx.ASP4	01-60	Double , Float	Read/Write
Upper Scale Value of Math Channel*	CHAxx.scale_Hi	01-60	Double , Float	Read Only
Lower Scale Value of Math Channel*	CHAxx.scale_Lo	01-60	Double , Float	Read Only
Unit String of Math Channel*	CHAxx.unit	01-60	String	Read Only
Tagname of Math Channel*	CHAxx.tag	01-60	String	Read Only
Status of Math Channel*	CHAxx.status	01-60	String	Read Only
Lowest Math Channel*	CHA.Low		Short , Word, Byte	Read Only
Highest Math Channel*	CHA.High		Short , Word, Byte	Read Only

^{*}The data associated with these addresses is only read from the device at the start of a communications session. Once read, the values will not be refreshed until the server has been restarted or the "Reset" tag has been invoked. To invoke a reset, write a non-zero value to the Reset tag. Once the Reset tag has been invoked, the driver will reinitialize all startup data from the device.

Alarm Setpoints

Data values for alarm setpoints that are undefined in the device will be returned as +INF. Data values can only be written to alarm setpoints that are defined in the device. Write operations to undefined alarm setpoints will return an error. Alarm setpoint values are read one channel at a time. For devices with a large number of channels, increasing the scan rate of ASP items and/or reducing the number of active ASP items will increase the read performance of the PV and alarm data.

Scales

Data values for Scale_Hi and Scale_Lo for channels that are skipped will be returned as +INF.

Tag Names

For devices that do not support tag names (and channels that have unspecified tag names) the driver will construct an internal tag name based on the channel number. For example, the tag name of address 'CH001' will be returned as 'CH001'.

General Device Data

Address Type	Format	Range	Data Types	Access
Date of Last Data	Date		String	Read Only
Time of Last Data	Time		String	Read Only

Address Type	Format	Range	Data Types	Access
Model Name of Device*	Model		String	Read Only
Digital Output (Main Unit)	DOlxx	01-60	Boolean	Read/Write
Digital Output (Internal Switch)	DOSxx	01-60	Boolean	Read/Write
Digital Output (Sub Units)	DOxxx	001-560	Boolean	Read/Write
Math Communication Data**	CDxx	01-60	Short, Word, Byte	Write Only
Control Math Execution	MathControl		Short , Word, Byte	Write Only
Reset Alarms	AlarmReset		Boolean	Write Only
Control Command and Response	Command		String	Read/Write
Direct Reloading of Configuration	Reset		Boolean	Write Only

^{*}The model address type that returns the model name of the device may return 'DR231' for models of type DR241 and 'DR232' for models of type DR242.

Control Math Execution

The MathControl address type is only available for devices equipped with the math option. Write operations to the MathControl tag for non-math equipped devices will return an error.

Control Command and Response

The Command address allows the user to send a string command and receive a string response to and from the device. This means that any command can be sent to the device, including commands not directly supported by the driver. Write operations using the Command address should be performed with extreme caution.

Notes 1: The actual number of addresses available for of each type depends on the Yokogawa device's configuration. If the driver finds at Runtime that an address is not present in the device, it will post an error message and remove the tag from its scan list.

Notes 2: Addresses that have Write Only access are assigned a default access of Read/Write. Data values are unreadable for these addresses, however, and the associated tags are not included in the scan list. The current data value for these tags will always be 0 for numeric data types and null string for string data types.

DR130 Addressing

The driver supports the following addresses for this device. The default data type for each address type is shown in **bold**.

Measured Channels

Address Type	Format	Range	Data Types	Access
Process Value of Channel	CHxxx or CHxxx.PV	001-020	Double , Float	Read Only
Alarm Summary of Channel	CHxxx.Alarm	001-020	Short , Word, Byte	Read Only
Alarm Level1 Status of Channel	CHxxx.Alarm1	001-020	Short , Word, Byte	Read Only
Alarm Level2 Status of Channel	CHxxx.Alarm2	001-020	Short , Word, Byte	Read Only
Alarm Level3 Status of Channel	CHxxx.Alarm3	001-020	Short , Word, Byte	Read Only

^{**}The CD address type is only valid for devices equipped with the math option. Write operations to CD addresses for non-math equipped devices will return an error. The range of valid data for addresses 'CDxx' is -32000 to 32000. CD data values are converted in the device from a whole number to a real number based on the decimal point placement specified for the associated math channel. For example, the device would interpret a data value of 32000 written to a CD address location with a decimal point placement of .000 as 32.000.

Address Type	Format	Range	Data Types	Access
Alarm Level4 Status of Channel	CHxxx.Alarm4	001-020	Short , Word, Byte	Read Only
Set and Read Level1 Alarm Setpoint	CHxxx.ASP1	001-020	Double , Float	Read/Write
Set and Read Level2 Alarm Setpoint	CHxxx.ASP2	001-020	Double , Float	Read/Write
Set and Read Level3 Alarm Setpoint	CHxxx.ASP3	001-020	Double , Float	Read/Write
Set and Read Level4 Alarm Setpoint	CHxxx.ASP4	001-020	Double , Float	Read/Write
Upper Scale Value of Channel*	CHxxx.scale_Hi	001-020	Double , Float	Read Only
Lower Scale Value of Channel*	CHxxx.scale_Lo	001-020	Double , Float	Read Only
Unit String of Channel*	CHxxx.unit	001-020	String	Read Only
Tagname of Channel*	CHxxx.tag	001-020	String	Read Only
Status of Channel*	CHxxx.status	001-020	String	Read Only
Lowest Measuring Channel*	CH.Low		Short , Word, Byte	Read Only
Highest Measuring Channel*	CH.High		Short , Word, Byte	Read Only

Math Channels

Address Type	Format	Range	Data Types	Access
Process Value of Math Channel	CHAxx or CHAxx.PV	01-30	Double , Float	Read Only
Alarm Summary of Math Channel	CHAxx.Alarm	01-30	Short , Word, Byte	Read Only
Alarm Level1 Status of Math Channel	CHAxx.Alarm1	01-30	Short , Word, Byte	Read Only
Alarm Level2 Status of Math Channel	CHAxx.Alarm2	01-30	Short , Word, Byte	Read Only
Alarm Level3 Status of Math Channel	CHAxx.Alarm3	01-30	Short , Word, Byte	Read Only
Alarm Level4 Status of Math Channel	CHAxx.Alarm4	01-30	Short , Word, Byte	Read Only
Set and Read Level1 Alarm Setpoint	CHAxx.ASP1	01-30	Double , Float	Read/Write
Set and Read Level2 Alarm Setpoint	CHAxx.ASP2	01-30	Double , Float	Read/Write
Set and Read Level3 Alarm Setpoint	CHAxx.ASP3	01-30	Double , Float	Read/Write
Set and Read Level4 Alarm Setpoint	CHAxx.ASP4	01-30	Double , Float	Read/Write
Upper Scale Value of Math Channel*	CHAxx.scale_Hi	01-30	Double , Float	Read Only
Lower Scale Value of Math Channel*	CHAxx.scale_Lo	01-30	Double , Float	Read Only
Unit String of Math Channel*	CHAxx.unit	01-30	String	Read Only
Tagname of Math Channel*	CHAxx.tag	01-30	String	Read Only
Status of Math Channel*	CHAxx.status	01-30	String	Read Only
Lowest Math Channel*	CHA.Low		Short , Word, Byte	Read Only
Highest Math Channel*	CHA.High		Short , Word, Byte	Read Only

^{*}The data associated with these addresses is only read from the device at the start of a communications session. Once read, the values will not be refreshed until the server has been restarted or the "Reset" tag has been invoked. To invoke a reset, write a non-zero value to the Reset tag. Once the Reset tag has been invoked, the driver will reinitialize all startup data from the device.

Alarm Setpoints

Data values for alarm setpoints that are undefined in the device will be returned as +INF. Data values can only be written to alarm setpoints that are defined in the device. Write operations to undefined alarm setpoints will return an error. Alarm setpoint values are read one channel at a time. For devices with a large number of channels, increasing the scan rate of ASP items and/or reducing the number of active ASP items will increase the read performance of the PV and alarm data.

Scales

Data values for Scale_Hi and Scale_Lo for channels that are skipped will be returned as +INF.

Tag Names

For devices that do not support tag names (and channels that have unspecified tag names) the driver will construct an internal tag name based on the channel number. For example, the tag name of address 'CH001' will be returned as 'CH001'.

General Device Data

Address Type	Format	Range	Data Types	Access
Date of Last Data	Date		String	Read Only
Time of Last Data	Time		String	Read Only
Model Name of Device*	Model		String	Read Only
Math Communication Data**	CDxx	01-30	Short, Word, Byte	Write Only
Control Math Execution	MathControl		Short , Word, Byte	Write Only
Reset Alarms	AlarmReset		Boolean	Write Only
Control Command and Response	Command		String	Read/Write
Direct Reloading of Configuration	Reset		Boolean	Write Only

^{*}The model address type that returns the model name of the device may return 'DR231' for models of type DR241 and 'DR232' for models of type DR242.

Control Math Execution

The MathControl address type is only available for devices equipped with the math option. Write operations to the MathControl tag for non-math equipped devices will return an error.

Control Command and Response

The Command address allows the user to send a string command and receive a string response to and from the device. This means that any command can be sent to the device, including commands not directly supported by the driver. Write operations using the Command address should be performed with extreme caution.

Notes 1: The actual number of addresses available for of each type depends on the Yokogawa device's configuration. If the driver finds at Runtime that an address is not present in the device, it will post an error message and remove the tag from its scan list.

Notes 2: Addresses that have Write Only access are assigned a default access of Read/Write. Data values are unreadable for these addresses, however, and the associated tags are not included in the scan list. The current data value for these tags will always be 0 for numeric data types and null string for string data types.

DR231 Addressing

The driver supports the following addresses for this device. The default data type for each address type is shown in **bold**.

Measured Channels

^{**}The CD address type is only valid for devices equipped with the math option. Write operations to CD addresses for non-math equipped devices will return an error. The range of valid data for addresses 'CDxx' is -32000 to 32000. CD data values are converted in the device from a whole number to a real number based on the decimal point placement specified for the associated math channel. For example, the device would interpret a data value of 32000 written to a CD address location with a decimal point placement of .000 as 32.000.

Address Type	Format	Range	Data Types	Access
Process Value of Channel	CHxxx or CHxxx.PV	001-040	Double , Float	Read Only
Alarm Summary of Channel	CHxxx.Alarm	001-040	Short , Word, Byte	Read Only
Alarm Level1 Status of Channel	CHxxx.Alarm1	001-040	Short , Word, Byte	Read Only
Alarm Level2 Status of Channel	CHxxx.Alarm2	001-040	Short , Word, Byte	Read Only
Alarm Level3 Status of Channel	CHxxx.Alarm3	001-040	Short , Word, Byte	Read Only
Alarm Level4 Status of Channel	CHxxx.Alarm4	001-040	Short , Word, Byte	Read Only
Set and Read Level1 Alarm Setpoint	CHxxx.ASP1	001-040	Double , Float	Read/Write
Set and Read Level2 Alarm Setpoint	CHxxx.ASP2	001-040	Double , Float	Read/Write
Set and Read Level3 Alarm Setpoint	CHxxx.ASP3	001-040	Double , Float	Read/Write
Set and Read Level4 Alarm Setpoint	CHxxx.ASP4	001-040	Double , Float	Read/Write
Upper Scale Value of Channel*	CHxxx.scale_Hi	001-040	Double , Float	Read Only
Lower Scale Value of Channel*	CHxxx.scale_Lo	001-040	Double , Float	Read Only
Unit String of Channel*	CHxxx.unit	001-040	String	Read Only
Tagname of Channel*	CHxxx.tag	001-040	String	Read Only
Status of Channel*	CHxxx.status	001-040	String	Read Only
Lowest Measuring Channel*	CH.Low		Short , Word, Byte	Read Only
Highest Measuring Channel*	CH.High		Short , Word, Byte	Read Only

Math Channels

Address Type	Format	Range	Data Types	Access
Process Value of Math Channel	CHAxx or CHAxx.PV	01-30	Double , Float	Read Only
Alarm Summary of Math Channel	CHAxx.Alarm	01-30	Short , Word, Byte	Read Only
Alarm Level1 Status of Math Channel	CHAxx.Alarm1	01-30	Short , Word, Byte	Read Only
Alarm Level2 Status of Math Channel	CHAxx.Alarm2	01-30	Short , Word, Byte	Read Only
Alarm Level3 Status of Math Channel	CHAxx.Alarm3	01-30	Short , Word, Byte	Read Only
Alarm Level4 Status of Math Channel	CHAxx.Alarm4	01-30	Short , Word, Byte	Read Only
Set and Read Level1 Alarm Setpoint	CHAxx.ASP1	01-30	Double , Float	Read/Write
Set and Read Level2 Alarm Setpoint	CHAxx.ASP2	01-30	Double , Float	Read/Write
Set and Read Level3 Alarm Setpoint	CHAxx.ASP3	01-30	Double , Float	Read/Write
Set and Read Level4 Alarm Setpoint	CHAxx.ASP4	01-30	Double , Float	Read/Write
Upper Scale Value of Math Channel*	CHAxx.scale_Hi	01-30	Double , Float	Read Only
Lower Scale Value of Math Channel*	CHAxx.scale_Lo	01-30	Double , Float	Read Only
Unit String of Math Channel*	CHAxx.unit	01-30	String	Read Only
Tagname of Math Channel*	CHAxx.tag	01-30	String	Read Only
Status of Math Channel*	CHAxx.status	01-30	String	Read Only
Lowest Math Channel*	CHA.Low		Short , Word, Byte	Read Only
Highest Math Channel*	CHA.High		Short , Word, Byte	Read Only

^{*}The data associated with these addresses is only read from the device at the start of a communications session. Once read, the values will not be refreshed until the server has been restarted or the "Reset" tag has been invoked. To invoke a reset, write a non-zero value to the Reset tag. Once the Reset tag has been invoked, the driver will reinitialize all startup data from the device.

Alarm Setpoints

Data values for alarm setpoints that are undefined in the device will be returned as +INF. Data values can only be written to alarm setpoints that are defined in the device. Write operations to undefined alarm setpoints will return an error. Alarm setpoint values are read one channel at a time. For devices with a large number of channels, increasing the scan rate of ASP items and/or reducing the number of active ASP items will increase the read performance of the PV and alarm data.

Scales

Data values for Scale_Hi and Scale_Lo for channels that are skipped will be returned as +INF.

Tag Names

For devices that do not support tag names (and channels that have unspecified tag names) the driver will construct an internal tag name based on the channel number. For example, the tag name of address 'CH001' will be returned as 'CH001'.

General Device Data

Address Type	Format	Range	Data Types	Access
Date of Last Data	Date		String	Read Only
Time of Last Data	Time		String	Read Only
Model Name of Device*	Model		String	Read Only
Math Communication Data**	CDxx	01-30	Short, Word, Byte	Write Only
Control Math Execution	MathControl		Short, Word, Byte	Write Only
Reset Alarms	AlarmReset		Boolean	Write Only
Control Command and Response	Command		String	Read/Write
Direct Reloading of Configuration	Reset		Boolean	Write Only

^{*}The model address type that returns the model name of the device may return 'DR231' for models of type DR241 and 'DR232' for models of type DR242.

Control Math Execution

The MathControl address type is only available for devices equipped with the math option. Write operations to the MathControl tag for non-math equipped devices will return an error.

Control Command and Response

The Command address allows the user to send a string command and receive a string response to and from the device. This means that any command can be sent to the device, including commands not directly supported by the driver. Write operations using the Command address should be performed with extreme caution.

Note 1: The actual number of addresses available for of each type depends on the Yokogawa device's configuration. If the driver finds at Runtime that an address is not present in the device, it will post an error message and remove the tag from its scan list.

Note 2: Addresses that have Write Only access are assigned a default access of Read/Write. Data values are unreadable for these addresses, however, and the associated tags are not included in the scan list. The current data value for these tags will always be 0 for numeric data types and null string for string data types.

^{**}The CD address type is only valid for devices equipped with the math option. Write operations to CD addresses for non-math equipped devices will return an error. The range of valid data for addresses 'CDxx' is -32000 to 32000. CD data values are converted in the device from a whole number to a real number based on the decimal point placement specified for the associated math channel. For example, the device would interpret a data value of 32000 written to a CD address location with a decimal point placement of .000 as 32.000.

DR232 Addressing

The driver supports the following addresses for this device. The default data type for each address type is shown in **bold**.

Measured Channels

Address Type	Format	Range	Data Types	Access
Process Value of Channel	CHxxx or CHxxx.PV	001-560	Double , Float	Read Only
Alarm Summary of Channel	CHxxx.Alarm	001-560	Short , Word, Byte	Read Only
Alarm Level1 Status of Channel	CHxxx.Alarm1	001-560	Short , Word, Byte	Read Only
Alarm Level2 Status of Channel	CHxxx.Alarm2	001-560	Short , Word, Byte	Read Only
Alarm Level3 Status of Channel	CHxxx.Alarm3	001-560	Short , Word, Byte	Read Only
Alarm Level4 Status of Channel	CHxxx.Alarm4	001-560	Short , Word, Byte	Read Only
Set and Read Level1 Alarm Setpoint	CHxxx.ASP1	001-560	Double , Float	Read/Write
Set and Read Level2 Alarm Setpoint	CHxxx.ASP2	001-560	Double , Float	Read/Write
Set and Read Level3 Alarm Setpoint	CHxxx.ASP3	001-560	Double , Float	Read/Write
Set and Read Level4 Alarm Setpoint	CHxxx.ASP4	001-560	Double , Float	Read/Write
Upper Scale Value of Channel*	CHxxx.scale_Hi	001-560	Double , Float	Read Only
Lower Scale Value of Channel*	CHxxx.scale_Lo	001-560	Double , Float	Read Only
Unit String of Channel*	CHxxx.unit	001-560	String	Read Only
Tagname of Channel*	CHxxx.tag	001-560	String	Read Only
Status of Channel*	CHxxx.status	001-560	String	Read Only
Lowest Measuring Channel*	CH.Low		Short , Word, Byte	Read Only
Highest Measuring Channel*	CH.High		Short , Word, Byte	Read Only

Math Channels

Address Type	Format	Range	Data Types	Access
Process Value of Math Channel	CHAxx or CHAxx.PV	01-60	Double , Float	Read Only
Alarm Summary of Math Channel	CHAxx.Alarm	01-60	Short , Word, Byte	Read Only
Alarm Level1 Status of Math Channel	CHAxx.Alarm1	01-60	Short , Word, Byte	Read Only
Alarm Level2 Status of Math Channel	CHAxx.Alarm2	01-60	Short , Word, Byte	Read Only
Alarm Level3 Status of Math Channel	CHAxx.Alarm3	01-60	Short , Word, Byte	Read Only
Alarm Level4 Status of Math Channel	CHAxx.Alarm4	01-60	Short , Word, Byte	Read Only
Set and Read Level1 Alarm Setpoint	CHAxx.ASP1	01-60	Double , Float	Read/Write
Set and Read Level2 Alarm Setpoint	CHAxx.ASP2	01-60	Double , Float	Read/Write
Set and Read Level3 Alarm Setpoint	CHAxx.ASP3	01-60	Double , Float	Read/Write
Set and Read Level4 Alarm Setpoint	CHAxx.ASP4	01-60	Double , Float	Read/Write
Upper Scale Value of Math Channel*	CHAxx.scale_Hi	01-60	Double , Float	Read Only
Lower Scale Value of Math Channel*	CHAxx.scale_Lo	01-60	Double , Float	Read Only
Unit String of Math Channel*	CHAxx.unit	01-60	String	Read Only
Tagname of Math Channel*	CHAxx.tag	01-60	String	Read Only
Status of Math Channel*	CHAxx.status	01-60	String	Read Only
Lowest Math Channel*	CHA.Low		Short , Word, Byte	Read Only
Highest Math Channel*	CHA.High		Short , Word, Byte	Read Only

*The data associated with these addresses is only read from the device at the start of a communications session. Once read, the values will not be refreshed until the server has been restarted or the "Reset" tag has been invoked. To invoke a reset, a non zero value must be written to the Reset tag. Once the Reset tag has been invoked, the driver will reinitialize all startup data from the device.

Alarm Setpoints

Data values for alarm setpoints that are undefined in the device will be returned as +INF. Data values can only be written to alarm setpoints that are defined in the device. Write operations to undefined alarm setpoints will return an error. Alarm setpoint values are read one channel at a time. For devices with a large number of channels, increasing the scan rate of ASP items and/or reducing the number of active ASP items will increase the read performance of the PV and alarm data.

Scales

Data values for Scale_Hi and Scale_Lo for channels that are skipped will be returned as +INF.

Tag Names

For devices that do not support tag names (and channels that have unspecified tag names) the driver will construct an internal tag name based on the channel number. For example, the tag name of address 'CH001' will be returned as 'CH001'.

General Device Data

Address Type	Format	Range	Data Types	Access
Date of Last Data	Date		String	Read Only
Time of Last Data	Time		String	Read Only
Model Name of Device*	Model		String	Read Only
Math Communication Data**	CDxx	01-60	Short , Word, Byte	Write Only
Control Math Execution	MathControl		Short, Word, Byte	Write Only
Reset Alarms	AlarmReset		Boolean	Write Only
Control Command and Response	Command		String	Read/Write
Direct Reloading of Configuration	Reset		Boolean	Write Only

^{*}The model address type that returns the model name of the device may return 'DR231' for models of type DR241 and 'DR232' for models of type DR242.

Control Math Execution

The MathControl address type is only available for devices equipped with the math option. Write operations to the MathControl tag for non-math equipped devices will return an error.

Control Command and Response

The Command address allows the user to send a string command and receive a string response to and from the device. This means that any command can be sent to the device, including commands not directly supported by the driver. Write operations using the Command address should be performed with extreme caution.

^{**}The CD address type is only valid for devices equipped with the math option. Write operations to CD addresses for non-math equipped devices will return an error. The range of valid data for addresses 'CDxx' is -32000 to 32000. CD data values are converted in the device from a whole number to a real number based on the decimal point placement specified for the associated math channel. For example, the device would interpret a data value of 32000 written to a CD address location with a decimal point placement of .000 as 32.000.

Notes 1: The actual number of addresses available for of each type depends on the Yokogawa device's configuration. If the driver finds at Runtime that an address is not present in the device, it will post an error message and remove the tag from its scan list.

Notes 2: Addresses that have Write Only access are assigned a default access of Read/Write. Data values are unreadable for these addresses, however, and the associated tags are not included in the scan list. The current data value for these tags will always be 0 for numeric data types and null string for string data types.

DR241 Addressing

The driver supports the following addresses for this device. The default data type for each address type is shown in **bold**.

Measured Channels

Address Type	Format	Range	Data Types	Access
Process Value of Channel	CHxxx or CHxxx.PV	001-040	Double , Float	Read Only
Alarm Summary of Channel	CHxxx.Alarm	001-040	Short , Word, Byte	Read Only
Alarm Level1 Status of Channel	CHxxx.Alarm1	001-040	Short , Word, Byte	Read Only
Alarm Level2 Status of Channel	CHxxx.Alarm2	001-040	Short , Word, Byte	Read Only
Alarm Level3 Status of Channel	CHxxx.Alarm3	001-040	Short , Word, Byte	Read Only
Alarm Level4 Status of Channel	CHxxx.Alarm4	001-040	Short , Word, Byte	Read Only
Set and Read Level1 Alarm Setpoint	CHxxx.ASP1	001-040	Double , Float	Read/Write
Set and Read Level2 Alarm Setpoint	CHxxx.ASP2	001-040	Double , Float	Read/Write
Set and Read Level3 Alarm Setpoint	CHxxx.ASP3	001-040	Double , Float	Read/Write
Set and Read Level4 Alarm Setpoint	CHxxx.ASP4	001-040	Double , Float	Read/Write
Upper Scale Value of Channel*	CHxxx.scale_Hi	001-040	Double , Float	Read Only
Lower Scale Value of Channel*	CHxxx.scale_Lo	001-040	Double , Float	Read Only
Unit String of Channel*	CHxxx.unit	001-040	String	Read Only
Tagname of Channel*	CHxxx.tag	001-040	String	Read Only
Status of Channel*	CHxxx.status	001-040	String	Read Only
Lowest Measuring Channel*	CH.Low		Short , Word, Byte	Read Only
Highest Measuring Channel*	CH.High		Short , Word, Byte	Read Only

Math Channels

Address Type	Format	Range	Data Types	Access
Process Value of Math Channel	CHAxx or CHAxx.PV	01-30	Double , Float	Read Only
Alarm Summary of Math Channel	CHAxx.Alarm	01-30	Short , Word, Byte	Read Only
Alarm Level1 Status of Math Channel	CHAxx.Alarm1	01-30	Short , Word, Byte	Read Only
Alarm Level2 Status of Math Channel	CHAxx.Alarm2	01-30	Short , Word, Byte	Read Only
Alarm Level3 Status of Math Channel	CHAxx.Alarm3	01-30	Short , Word, Byte	Read Only
Alarm Level4 Status of Math Channel	CHAxx.Alarm4	01-30	Short , Word, Byte	Read Only
Set and Read Level1 Alarm Setpoint	CHAxx.ASP1	01-30	Double , Float	Read/Write
Set and Read Level2 Alarm Setpoint	CHAxx.ASP2	01-30	Double , Float	Read/Write
Set and Read Level3 Alarm Setpoint	CHAxx.ASP3	01-30	Double , Float	Read/Write
Set and Read Level4 Alarm Setpoint	CHAxx.ASP4	01-30	Double , Float	Read/Write
Upper Scale Value of Math Channel*	CHAxx.scale_Hi	01-30	Double , Float	Read Only
Lower Scale Value of Math Channel*	CHAxx.scale_Lo	01-30	Double , Float	Read Only

Address Type	Format	Range	Data Types	Access
Unit String of Math Channel*	CHAxx.unit	01-30	String	Read Only
Tagname of Math Channel*	CHAxx.tag	01-30	String	Read Only
Status of Math Channel*	CHAxx.status	01-30	String	Read Only
Lowest Math Channel*	CHA.Low		Short , Word, Byte	Read Only
Highest Math Channel*	CHA.High		Short , Word, Byte	Read Only

^{*}The data associated with these addresses is only read from the device at the start of a communications session. Once read, the values will not be refreshed until the server has been restarted or the "Reset" tag has been invoked. To invoke a reset, write a non-zero value to the Reset tag. Once the Reset tag has been invoked, the driver will reinitialize all startup data from the device.

Alarm Setpoints

Data values for alarm setpoints that are undefined in the device will be returned as +INF. Data values can only be written to alarm setpoints that are defined in the device. Write operations to undefined alarm setpoints will return an error. Alarm setpoint values are read one channel at a time. For devices with a large number of channels, increasing the scan rate of ASP items and/or reducing the number of active ASP items will increase the read performance of the PV and alarm data.

Scales

Data values for Scale_Hi and Scale_Lo for channels that are skipped will be returned as +INF.

Tag Names

For devices that do not support tag names (and channels that have unspecified tag names) the driver will construct an internal tag name based on the channel number. For example, the tag name of address 'CH001' will be returned as 'CH001'.

General Device Data

0011014112011002414					
Address Type	Format	Range	Data Types	Access	
Date of Last Data	Date		String	Read Only	
Time of Last Data	Time		String	Read Only	
Model Name of Device*	Model		String	Read Only	
Math Communication Data**	CDxx	01-30	Short, Word, Byte	Write Only	
Control Math Execution	MathControl		Short, Word, Byte	Write Only	
Reset Alarms	AlarmReset		Boolean	Write Only	
Control Command and Response	Command		String	Read/Write	
Direct Reloading of Configuration	Reset		Boolean	Write Only	

^{*}The model address type that returns the model name of the device may return 'DR231' for models of type DR241 and 'DR232' for models of type DR242.

Control Math Execution

^{**}The CD address type is only valid for devices equipped with the math option. Write operations to CD addresses for non-math equipped devices will return an error. The range of valid data for addresses 'CDxx' is -32000 to 32000. CD data values are converted in the device from a whole number to a real number based on the decimal point placement specified for the associated math channel. For example, the device would interpret a data value of 32000 written to a CD address location with a decimal point placement of .000 as 32.000.

The MathControl address type is only available for devices equipped with the math option. Write operations to the MathControl tag for non-math equipped devices will return an error.

Control Command and Response

The Command address allows the user to send a string command and receive a string response to and from the device. This means that any command can be sent to the device, including commands not directly supported by the driver. Write operations using the Command address should be performed with extreme caution.

Note 1: The actual number of addresses available for of each type depends on the Yokogawa device's configuration. If the driver finds at Runtime that an address is not present in the device, it will post an error message and remove the tag from its scan list.

Note 2: Addresses that have Write Only access are assigned a default access of Read/Write. Data values are unreadable for these addresses, however, and the associated tags are not included in the scan list. The current data value for these tags will always be 0 for numeric data types and null string for string data types.

DR242 Addressing

The driver supports the following addresses for this device. The default data type for each address type is shown in **bold**.

Measured Channels

Address Type	Format	Range	Data Types	Access
Process Value of Channel	CHxxx or CHxxx.PV	001-560	Double , Float	Read Only
Alarm Summary of Channel	CHxxx.Alarm	001-560	Short , Word, Byte	Read Only
Alarm Level1 Status of Channel	CHxxx.Alarm1	001-560	Short , Word, Byte	Read Only
Alarm Level2 Status of Channel	CHxxx.Alarm2	001-560	Short , Word, Byte	Read Only
Alarm Level3 Status of Channel	CHxxx.Alarm3	001-560	Short , Word, Byte	Read Only
Alarm Level4 Status of Channel	CHxxx.Alarm4	001-560	Short , Word, Byte	Read Only
Set and Read Level1 Alarm Setpoint	CHxxx.ASP1	001-560	Double , Float	Read/Write
Set and Read Level2 Alarm Setpoint	CHxxx.ASP2	001-560	Double , Float	Read/Write
Set and Read Level3 Alarm Setpoint	CHxxx.ASP3	001-560	Double , Float	Read/Write
Set and Read Level4 Alarm Setpoint	CHxxx.ASP4	001-560	Double , Float	Read/Write
Upper Scale Value of Channel*	CHxxx.scale_Hi	001-560	Double , Float	Read Only
Lower Scale Value of Channel*	CHxxx.scale_Lo	001-560	Double , Float	Read Only
Unit String of Channel*	CHxxx.unit	001-560	String	Read Only
Tagname of Channel*	CHxxx.tag	001-560	String	Read Only
Status of Channel*	CHxxx.status	001-560	String	Read Only
Lowest Measuring Channel*	CH.Low		Short , Word, Byte	Read Only
Highest Measuring Channel*	CH.High		Short , Word, Byte	Read Only

Math Channels

Address Type	Format	Range	Data Types	Access
Process Value of Math Channel	CHAxx or CHAxx.PV	01-60	Double , Float	Read Only
Alarm Summary of Math Channel	CHAxx.Alarm	01-60	Short , Word, Byte	Read Only
Alarm Level1 Status of Math Channel	CHAxx.Alarm1	01-60	Short , Word, Byte	Read Only
Alarm Level2 Status of Math Channel	CHAxx.Alarm2	01-60	Short , Word, Byte	Read Only

Address Type	Format	Range	Data Types	Access
Alarm Level3 Status of Math Channel	CHAxx.Alarm3	01-60	Short , Word, Byte	Read Only
Alarm Level4 Status of Math Channel	CHAxx.Alarm4	01-60	Short , Word, Byte	Read Only
Set and Read Level1 Alarm Setpoint	CHAxx.ASP1	01-60	Double , Float	Read/Write
Set and Read Level2 Alarm Setpoint	CHAxx.ASP2	01-60	Double , Float	Read/Write
Set and Read Level3 Alarm Setpoint	CHAxx.ASP3	01-60	Double , Float	Read/Write
Set and Read Level4 Alarm Setpoint	CHAxx.ASP4	01-60	Double , Float	Read/Write
Upper Scale Value of Math Channel*	CHAxx.scale_Hi	01-60	Double , Float	Read Only
Lower Scale Value of Math Channel*	CHAxx.scale_Lo	01-60	Double , Float	Read Only
Unit String of Math Channel*	CHAxx.unit	01-60	String	Read Only
Tagname of Math Channel*	CHAxx.tag	01-60	String	Read Only
Status of Math Channel*	CHAxx.status	01-60	String	Read Only
Lowest Math Channel*	CHA.Low		Short , Word, Byte	Read Only
Highest Math Channel*	CHA.High		Short , Word, Byte	ReadOnly

^{*}The data associated with these addresses is only read from the device at the start of a communications session. Once read, the values will not be refreshed until the server has been restarted or the "Reset" tag has been invoked. To invoke a reset, write a non-zero value to the Reset tag. Once the Reset tag has been invoked, the driver will reinitialize all startup data from the device.

Alarm Setpoints

Data values for alarm setpoints that are undefined in the device will be returned as +INF. Data values can only be written to alarm setpoints that are defined in the device. Write operations to undefined alarm setpoints will return an error. Alarm setpoint values are read one channel at a time. For devices with a large number of channels, increasing the scan rate of ASP items and/or reducing the number of active ASP items will increase the read performance of the PV and alarm data.

Scales

Data values for Scale_Hi and Scale_Lo for channels that are skipped will be returned as +INF.

Tag Names

For devices that do not support tag names (and channels that have unspecified tag names) the driver will construct an internal tag name based on the channel number. For example, the tag name of address 'CH001' will be returned as 'CH001'.

General Device Data

Address Type	Format	Range	Data Types	Access
Date of Last Data	Date		String	Read Only
Time of Last Data	Time		String	Read Only
Model Name of Device*	Model		String	Read Only
Math Communication Data**	CDxx	01-60	Short , Word, Byte	Write Only
Control Math Execution	MathControl		Short, Word, Byte	Write Only
Reset Alarms	AlarmReset		Boolean	Write Only
Control Command and Response	Command		String	Read/Write
Direct Reloading of Configuration	Reset		Boolean	Write Only

^{*}The model address type that returns the model name of the device may return 'DR231' for models of type DR241 and 'DR232' for models of type DR242.

**The CD address type is only valid for devices equipped with the math option. Write operations to CD addresses for non-math equipped devices will return an error. The range of valid data for addresses 'CDxx' is -32000 to 32000. CD data values are converted in the device from a whole number to a real number based on the decimal point placement specified for the associated math channel. For example, the device would interpret a data value of 32000 written to a CD address location with a decimal point placement of .000 as 32.000.

Control Math Execution

The MathControl address type is only available for devices equipped with the math option. Write operations to the MathControl tag for non-math equipped devices will return an error.

Control Command and Response

The Command address allows the user to send a string command and receive a string response to and from the device. This means that any command can be sent to the device, including commands not directly supported by the driver. Write operations using the Command address should be performed with extreme caution.

Notes 1: The actual number of addresses available for of each type depends on the Yokogawa device's configuration. If the driver finds at Runtime that an address is not present in the device, it will post an error message and remove the tag from its scan list.

Notes 2: Addresses that have Write Only access are assigned a default access of Read/Write. Data values are unreadable for these addresses, however, and the associated tags are not included in the scan list. The current data value for these tags will always be 0 for numeric data types and null string for string data types.

DC100-1 Addressing

The driver supports the following addresses for this device. The default data type for each address type is shown in **bold**.

Measured Channels

Address Type	Format	Range	Data Types	Access
Process Value of Channel	CHxxx or CHxxx.PV	001-060	Double , Float	Read Only
Alarm Summary of Channel	CHxxx.Alarm	001-060	Short , Word, Byte	Read Only
Alarm Level1 Status of Channel	CHxxx.Alarm1	001-060	Short , Word, Byte	Read Only
Alarm Level2 Status of Channel	CHxxx.Alarm2	001-060	Short , Word, Byte	Read Only
Alarm Level3 Status of Channel	CHxxx.Alarm3	001-060	Short , Word, Byte	Read Only
Alarm Level4 Status of Channel	CHxxx.Alarm4	001-060	Short , Word, Byte	Read Only
Set and Read Level1 Alarm Setpoint	CHxxx.ASP1	001-060	Double , Float	Read/Write
Set and Read Level2 Alarm Setpoint	CHxxx.ASP2	001-060	Double , Float	Read/Write
Set and Read Level3 Alarm Setpoint	CHxxx.ASP3	001-060	Double , Float	Read/Write
Set and Read Level4 Alarm Setpoint	CHxxx.ASP4	001-060	Double , Float	Read/Write
Upper Scale Value of Channel*	CHxxx.scale_Hi	001-060	Double , Float	Read Only
Lower Scale Value of Channel*	CHxxx.scale_Lo	001-060	Double , Float	Read Only
Unit String of Channel*	CHxxx.unit	001-060	String	Read Only
Tagname of Channel*	CHxxx.tag	001-060	String	Read Only
Status of Channel*	CHxxx.status	001-060	String	Read Only
Lowest Measuring Channel*	CH.Low		Short , Word, Byte	Read Only
Highest Measuring Channel*	CH.High		Short , Word, Byte	Read Only

Math Channels

Address Type	Format	Range	Data Types	Access
Process Value of Math Channel	CHAxx or CHAxx.PV	01-30	Double , Float	Read Only
Alarm Summary of Math Channel	CHAxx.Alarm	01-30	Short , Word, Byte	Read Only
Alarm Level1 Status of Math Channel	CHAxx.Alarm1	01-30	Short , Word, Byte	Read Only
Alarm Level2 Status of Math Channel	CHAxx.Alarm2	01-30	Short , Word, Byte	Read Only
Alarm Level3 Status of Math Channel	CHAxx.Alarm3	01-30	Short , Word, Byte	Read Only
Alarm Level4 Status of Math Channel	CHAxx.Alarm4	01-30	Short , Word, Byte	Read Only
Set and Read Level1 Alarm Setpoint	CHAxx.ASP1	01-30	Double , Float	Read/Write
Set and Read Level2 Alarm Setpoint	CHAxx.ASP2	01-30	Double , Float	Read/Write
Set and Read Level3 Alarm Setpoint	CHAxx.ASP3	01-30	Double , Float	Read/Write
Set and Read Level4 Alarm Setpoint	CHAxx.ASP4	01-30	Double , Float	Read/Write
Upper Scale Value of Math Channel*	CHAxx.scale_Hi	01-30	Double , Float	Read Only
Lower Scale Value of Math Channel*	CHAxx.scale_Lo	01-30	Double , Float	Read Only
Unit String of Math Channel*	CHAxx.unit	01-30	String	Read Only
Tagname of Math Channel*	CHAxx.tag	01-30	String	Read Only
Status of Math Channel*	CHAxx.status	01-30	String	Read Only
Lowest Math Channel*	CHA.Low		Short , Word, Byte	Read Only
Highest Math Channel*	CHA.High		Short , Word, Byte	Read Only

^{*}The data associated with these addresses is only read from the device at the start of a communications session. Once read, the values will not be refreshed until the server has been restarted or the "Reset" tag has been invoked. To invoke a reset, write a non-zero value to the Reset tag. Once the Reset tag has been invoked, the driver will reinitialize all startup data from the device.

Alarm Setpoints

Data values for alarm setpoints that are undefined in the device will be returned as +INF. Data values can only be written to alarm setpoints that are defined in the device. Write operations to undefined alarm setpoints will return an error. Alarm setpoint values are read one channel at a time. For devices with a large number of channels, increasing the scan rate of ASP items and/or reducing the number of active ASP items will increase the read performance of the PV and alarm data.

Scales

Data values for Scale_Hi and Scale_Lo for channels that are skipped will be returned as +INF.

Tag Names

For devices that do not support tag names (and channels that have unspecified tag names) the driver will construct an internal tag name based on the channel number. For example, the tag name of address 'CH001' will be returned as 'CH001'.

General Device Data

Address Type	Format	Range	Data Types	Access
Date of Last Data	Date		String	Read Only
Time of Last Data	Time		String	Read Only
Model Name of Device*	Model		String	Read Only
Math Communication Data**	CDxx	01-30	Short, Word, Byte	Write Only
Control Math Execution	MathControl		Short, Word, Byte	Write Only

Address Type	Format	Range	Data Types	Access
Reset Alarms	AlarmReset		Boolean	Write Only
Control Command and Response	Command		String	Read/Write
Direct Reloading of Configuration	Reset		Boolean	Write Only

^{*}The model address type that returns the model name of the device may return 'DR231' for models of type DR241 and 'DR232' for models of type DR242.

Control Math Execution

The MathControl address type is only available for devices equipped with the math option. Write operations to the MathControl tag for non-math equipped devices will return an error.

Control Command and Response

The Command address allows the user to send a string command and receive a string response to and from the device. This means that any command can be sent to the device, including commands not directly supported by the driver. Write operations using the Command address should be performed with extreme caution.

Note 1: The actual number of addresses available for of each type depends on the Yokogawa device's configuration. If the driver finds at Runtime that an address is not present in the device, it will post an error message and remove the tag from its scan list.

Note 2: Addresses that have Write Only access are assigned a default access of Read/Write. Data values are unreadable for these addresses, however, and the associated tags are not included in the scan list. The current data value for these tags will always be 0 for numeric data types and null string for string data types.

DC100-2 Addressing

The driver supports the following addresses for this device. The default data type for each address type is shown in **bold**.

Measured Channels

NedSored Citatiness					
Address Type	Format	Range	Data Types	Access	
Process Value of Channel	CHxxx or CHxxx.PV	001-560	Double , Float	Read Only	
Alarm Summary of Channel	CHxxx.Alarm	001-560	Short , Word, Byte	Read Only	
Alarm Level1 Status of Channel	CHxxx.Alarm1	001-560	Short , Word, Byte	Read Only	
Alarm Level2 Status of Channel	CHxxx.Alarm2	001-560	Short , Word, Byte	Read Only	
Alarm Level3 Status of Channel	CHxxx.Alarm3	001-560	Short , Word, Byte	Read Only	
Alarm Level4 Status of Channel	CHxxx.Alarm4	001-560	Short , Word, Byte	Read Only	
Set and Read Level1 Alarm Setpoint	CHxxx.ASP1	001-560	Double , Float	Read/Write	
Set and Read Level2 Alarm Setpoint	CHxxx.ASP2	001-560	Double , Float	Read/Write	
Set and Read Level3 Alarm Setpoint	CHxxx.ASP3	001-560	Double , Float	Read/Write	
Set and Read Level4 Alarm Setpoint	CHxxx.ASP4	001-560	Double , Float	Read/Write	
Upper Scale Value of Channel*	CHxxx.scale_Hi	001-560	Double , Float	Read Only	

^{**}The CD address type is only valid for devices equipped with the math option. Write operations to CD addresses for non-math equipped devices will return an error. The range of valid data for addresses 'CDxx' is -32000 to 32000. CD data values are converted in the device from a whole number to a real number based on the decimal point placement specified for the associated math channel. For example, the device would interpret a data value of 32000 written to a CD address location with a decimal point placement of .000 as 32.000.

Address Type	Format	Range	Data Types	Access
Lower Scale Value of Channel*	CHxxx.scale_Lo	001-560	Double , Float	Read Only
Unit String of Channel*	CHxxx.unit	001-560	String	Read Only
Tagname of Channel*	CHxxx.tag	001-560	String	Read Only
Status of Channel*	CHxxx.status	001-560	String	Read Only
Lowest Measuring Channel*	CH.Low		Short , Word, Byte	Read Only
Highest Measuring Channel*	CH.High		Short , Word, Byte	Read Only

Math Channels

Address Type	Format	Range	Data Types	Access
Process Value of Math Channel	CHAxx or CHAxx.PV	01-60	Double , Float	Read Only
Alarm Summary of Math Channel	CHAxx.Alarm	01-60	Short , Word, Byte	Read Only
Alarm Level1 Status of Math Channel	CHAxx.Alarm1	01-60	Short , Word, Byte	Read Only
Alarm Level2 Status of Math Channel	CHAxx.Alarm2	01-60	Short , Word, Byte	Read Only
Alarm Level3 Status of Math Channel	CHAxx.Alarm3	01-60	Short , Word, Byte	Read Only
Alarm Level4 Status of Math Channel	CHAxx.Alarm4	01-60	Short , Word, Byte	Read Only
Set and Read Level1 Alarm Setpoint	CHAxx.ASP1	01-60	Double , Float	Read/Write
Set and Read Level2 Alarm Setpoint	CHAxx.ASP2	01-60	Double , Float	Read/Write
Set and Read Level3 Alarm Setpoint	CHAxx.ASP3	01-60	Double , Float	Read/Write
Set and Read Level4 Alarm Setpoint	CHAxx.ASP4	01-60	Double , Float	Read/Write
Upper Scale Value of Math Channel*	CHAxx.scale_Hi	01-60	Double , Float	Read Only
Lower Scale Value of Math Channel*	CHAxx.scale_Lo	01-60	Double , Float	Read Only
Unit String of Math Channel*	CHAxx.unit	01-60	String	Read Only
Tagname of Math Channel*	CHAxx.tag	01-60	String	Read Only
Status of Math Channel*	CHAxx.status	01-60	String	Read Only
Lowest Math Channel*	CHA.Low		Short, Word, Byte	Read Only
Highest Math Channel*	CHA.High		Short , Word, Byte	Read Only

^{*}The data associated with these addresses is only read from the device at the start of a communications session. Once read, the values will not be refreshed until the server has been restarted or the "Reset" tag has been invoked. To invoke a reset, write a non-zero value to the Reset tag. Once the Reset tag has been invoked, the driver will reinitialize all startup data from the device.

Alarm Setpoints

Data values for alarm setpoints that are undefined in the device will be returned as +INF. Data values can only be written to alarm setpoints that are defined in the device. Write operations to undefined alarm setpoints will return an error. Alarm setpoint values are read one channel at a time. For devices with a large number of channels, increasing the scan rate of ASP items and/or reducing the number of active ASP items will increase the read performance of the PV and alarm data.

Scales

Data values for Scale_Hi and Scale_Lo for channels that are skipped will be returned as +INF.

Tag Names

For devices that do not support tag names (and channels that have unspecified tag names) the driver will construct an internal tag name based on the channel number. For example, the tag name of address 'CH001' will be returned as 'CH001'.

General Device Data

Address Type	Format	Range	Data Types	Access
Date of Last Data	Date		String	Read Only
Time of Last Data	Time		String	Read Only
Model Name of Device*	Model		String	Read Only
Math Communication Data**	CDxx	01-60	Short, Word, Byte	Write Only
Control Math Execution	MathControl		Short, Word, Byte	Write Only
Reset Alarms	AlarmReset		Boolean	Write Only
Control Command and Response	Command		String	Read/Write
Direct Reloading of Configuration	Reset		Boolean	Write Only

^{*}The model address type that returns the model name of the device may return 'DR231' for models of type DR241 and 'DR232' for models of type DR242.

Control Math Execution

The MathControl address type is only available for devices equipped with the math option. Write operations to the MathControl tag for non-math equipped devices will return an error.

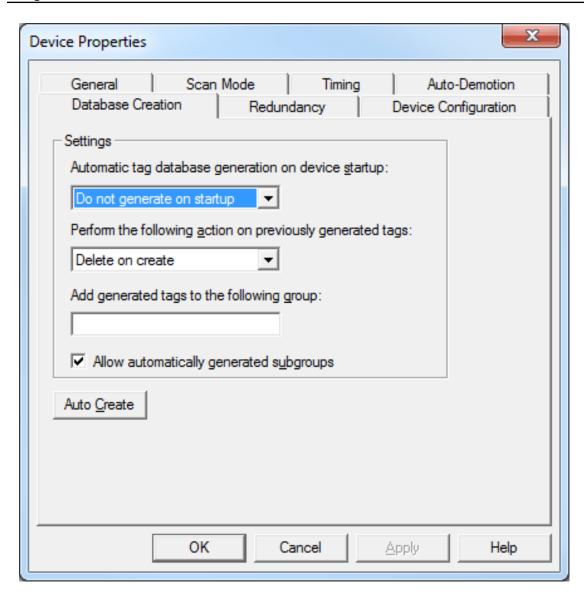
Control Command and Response

The Command address allows the user to send a string command and receive a string response to and from the device. This means that any command can be sent to the device, including commands not directly supported by the driver. Write operations using the Command address should be performed with extreme caution.

Notes 1: The actual number of addresses available for of each type depends on the Yokogawa device's configuration. If the driver finds at Runtime that an address is not present in the device, it will post an error message and remove the tag from its scan list.

Notes 2: Addresses that have Write Only access are assigned a default access of Read/Write. Data values are unreadable for these addresses, however, and the associated tags are not included in the scan list. The current data value for these tags will always be 0 for numeric data types and null string for string data types.

^{**}The CD address type is only valid for devices equipped with the math option. Write operations to CD addresses for non-math equipped devices will return an error. The range of valid data for addresses 'CDxx' is -32000 to 32000. CD data values are converted in the device from a whole number to a real number based on the decimal point placement specified for the associated math channel. For example, the device would interpret a data value of 32000 written to a CD address location with a decimal point placement of .000 as 32.000.


Automatic Tag Database Generation

This driver's Automatic OPC Tag Database Generation features are designed to make configuring the OPC application a plug-and-play operation. This driver can be configured to automatically build a list of OPC tags within OPC server that correspond to device-specific data. The automatically-generated OPC tags can then be browsed from the OPC client.

The OPC tags that are generated depend on the nature of the driver. If the target device supports its own local tag database, the driver will read the device's tag information and then use this data to generate OPC tags within the OPC server. If the device does not natively support its own named tags, the driver will create a list of tags based on driver-specific information. An example of these two conditions is follows:

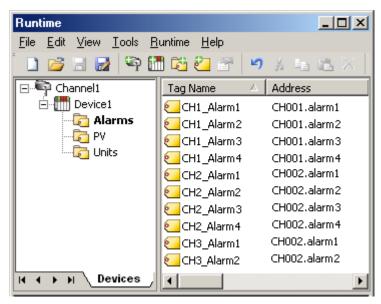
- 1. A data acquisition system that supports its own local tag database. The driver will use the tag names found in the device to build the OPC Server's OPC tags.
- 2. An Ethernet I/O system that supports detection of I/O module type. The driver will automatically generate OPC tags in the OPC Server that are based on the types of I/O modules plugged into the Ethernet I/O rack.

Automatic Tag Database Generation is completely configurable. The following property group is used to define how the OPC server and the associated communications driver will handle automatic OPC tag database generation:

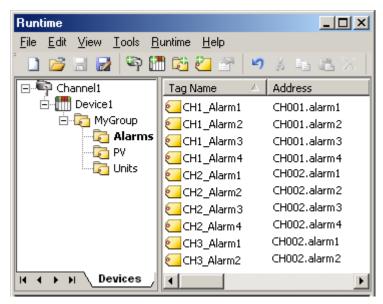
The **Tag Generation On Device Startup** property is used to configure when OPC tags will be automatically generated. Descriptions of the properties are as follows:

- **Do not generate on startup:** This option prevents the driver from adding any OPC tags to the OPC server's tag space. This is the default setting.
- **Always generate on startup:** This option causes the driver to always evaluate the device for tag information. OPC tags will be added to the tag space of the server each time the server is launched.
- **Generate on first startup:** This option causes the driver to evaluate the target device for tag information the first time the OPC server project is run. OPC tags will be added to the server tag space as needed.

Note: Any tags that are added to the server's tag space must be saved with the project. The OPC server project can be configured to automatically save from the **Tools** | **Options** menu.


When automatic tag generation is enabled, the server needs to know what to do with OPC tags that were added from previous runs (or with the OPC tags that were added or modified after being added by the communications driver originally). The **On Duplicate Tag property** controls how the server will handle OPC tags that were automatically generated and currently exist in the OPC server project. This feature prevents automatically-generated tags from piling up in the server. In the Ethernet I/O example above, the I/O

modules continued to change in the rack with the OPC server configured to always generate new OPC tags on startup. Under this condition, tags would be added to the server every time the communications driver detected a new I/O module. If the old tags are not removed, they will accumulate in the server's tag space. Descriptions of the selections are as follows:


- 1. **Delete on create:** This option allows the server to remove any tags that have previously been added to the tag space before any new tags can be added by the communications driver. This is the default setting.
- 2. **Overwrite as necessary:** This option allows the server to only remove tags that the communications driver will replace with new tags. Any tags that are not being overwritten will remain in the server's tag space.
- 3. **Do not overwrite:** This option prevents the server from removing any tags that had previously been generated or that already exist in the server. With this selection, the communications driver can only add tags that are completely new.
- 4. **Do not overwrite, log error:** This option has the same effect as the third option, but also posts an error message to the OPC Server's Event Log when a tag overwrite would have occurred.

Note: The removal of OPC tags not only affects tags that have been automatically generated by the communications driver, but also any tags that have been added using names that match generated tags. It is recommended that users avoid adding tags to the server using names that match tags that may be automatically generated by the driver.

Parent Group can be used to keep automatically-generated tags from mixing with tags that have been entered manually. This property specifies a group that will be used when adding all automatically-generated tags for this device. The name of the sub group can be up to 31 characters in length. The following image displays demonstrate how this property affects where automatically-generated tags are placed in the server's tag space. It provides a root branch to which all automatically-generated tags will be added.

No sub group specified.

Sub group named MyGroup specified.

Allow Sub Groups can enable the server to create sub groups matching object hierarchy for the device. When enabled, this property causes the server to create the tags in subgroups conforming to the device object hierarchy. When disabled the tags will be created in a flat structure. The default value is enabled.

Create tags manually initiates the creation of automatically-generated OPC tags, and also forces the communications driver to reevaluate the device for possible tag changes. It can be accessed from the System Tags, thus allowing the OPC client application to initiate tag database creation.

Error Descriptions

The following error/warning messages may be generated. Click on the link for a description of the message.

Address Validation

Address '<address>' is out of range for the specified device or register

Data Type '<type>' is not valid for device address '<address>'

Device address '<address>' contains a syntax error

Device address '<address>' is Read Only

Missing address

The device '<device name>' responded with a NAK to a read request starting at address

'<address>'. The requested address may not exist in the device

Serial Communications

Communications error on '<channel name>' [<error mask>]

COMn does not exist

COMn is in use by another application

Error opening COMn

Unable to set comm properties on COMn

Device Status Messages

Device '<device name>' is not responding

Unable to write to '<address>' on device '<device name>'

Address Validation

The following error/warning messages may be generated. Click on the link for a description of the message.

Address Validation

Address '<address>' is out of range for the specified device or register

Data Type '<type>' is not valid for device address '<address>'

Device address '<address>' contains a syntax error

Device address '<address>' is Read Only

Missing address

The device '<device name>' responded with a NAK to a read request starting at address

'<address>'. The requested address may not exist in the device

Address '<address>' is out of range for the specified device or register

Error Type:

Warning

Possible Cause:

A tag address that has been specified statically references a location that is beyond the range of supported locations for the device.

Solution:

Verify that the address is correct; if it is not, re-enter it in the client application.

Data Type '<type>' is not valid for device address '<address>'

Error Type:

Warning

Possible Cause:

A tag address that has been specified statically has been assigned an invalid data type.

Solution:

Modify the requested data type in the client application.

Device address '<address>' contains a syntax error

Error Type:

Warning

Possible Cause:

A tag address that has been specified statically contains one or more invalid characters.

Solution:

Re-enter the address in the client application.

Device address '<address>' is Read Only

Error Type:

Warning

Possible Cause:

A tag address that has been specified statically has a requested access mode that is not compatible with what the device supports for that address.

Solution:

Change the access mode in the client application.

Missing address

Error Type:

Warning

Possible Cause:

A tag address that has been specified statically has no length.

Solution:

Re-enter the address in the client application.

The device '<device name>' responded with a NAK to a read request starting at address '<address>'. The requested address may not exist in the device

Error Type:

Warning

Possible Cause:

The requested address may not exist in the device.

Solution:

Verify that the address is correct; if it is not, re-enter it in the client application.

Serial Communications

The following error/warning messages may be generated. Click on the link for a description of the message.

Serial Communications

Communications error on '<channel name>' [<error mask>]

COMn does not exist

COMn is in use by another application

Error opening COMn

Unable to set comm properties on COMn

Communications error on '<channel name>' [<error mask>]

Error Type:

Serious

Error Mask Definitions:

- **B** = Hardware break detected.
- **F** = Framing error.
- **E** = I/O error.
- **O** = Character buffer overrun.
- **R** = RX buffer overrun.
- **P** = Received byte parity error.
- **T** = TX buffer full.

Possible Cause:

- 1. The serial connection between the device and the Host PC is bad.
- 2. The communications properties for the serial connection are incorrect.

Solution:

- 1. Verify the cabling between the PC and the PLC device.
- 2. Verify that the specified communications properties match those of the device.

COMn does not exist

Error Type:

Fatal

Possible Cause:

The specified COM port is not present on the target computer.

Solution:

Verify that the proper COM port has been selected.

COMn is in use by another application

Error Type:

Fatal

Possible Cause:

The serial port assigned to a device is being used by another application.

Solution:

- 1. Verify that the correct port has been assigned to the channel.
- 2. Verify that only one copy of the current project is running.

Error opening COMn

Error Type:

Fatal

Possible Cause:

The specified COM port could not be opened due an internal hardware or software problem on the target computer.

Solution:

Verify that the COM port is functional and may be accessed by other Windows applications.

Unable to set comm properties on COMn

Error Type:

Fatal

Possible Cause:

The serial properties for the specified COM port are not valid.

Solution:

Verify the serial properties and make any necessary changes.

Device Status Messages

The following error/warning messages may be generated. Click on the link for a description of the message.

Device Status Messages

Device '<device name>' is not responding

Unable to write to '<address>' on device '<device name>'

Device '<device name>' is not responding

Error Type:

Serious

Possible Cause:

- 1. The connection between the device and the Host PC is broken.
- 2. The IP address assigned to the device is incorrect.
- 3. The connection cannot be established in the specified timeout period.
- 4. The response cannot be received in the specified timeout period.
- 5. The response from the device took longer to receive than the amount of time specified in the "Request Timeout" device property.

Solution:

- 1. Verify the cabling between the PC and the PLC device.
- 2. Verify the IP address given to the named device matches that of the actual device.
- 3. Increase the Connect Timeout value in the Timeout page of Device Properties.
- 4. Increase the Request Timeout value in the Timeout page of Device Properties.
- 5. Increase the Request Timeout property so that the entire response can be handled.

Unable to write to '<address>' on device '<device name>'

Error Type:

Serious

Possible Cause:

- 1. The connection between the device and the Host PC is broken.
- 2. The named device may have been assigned an incorrect IP address.
- 3. The address specified may be Read Only or may not exist in the current device.

Solution:

- 1. Verify the cabling between the PC and the PLC device.
- 2. Verify the IP address given to the named device matches that of the actual device.
- 3. Check address availability for the device.

Index

Α

Address '<address>' is out of range for the specified device or register 34
Address Descriptions 10
Address Validation 34
Automatic Tag Database Generation 30

В

Boolean 9

C

Communications error on '<channel name>' [<error mask>] 36
Communications Parameters 7
COMn does not exist 36
COMn is in use by another application 37

D

DR241 Addressing 21

DA100-1 Addressing 10
DA100-2 Addressing 12
Data Type '<type>' is not valid for device address '<address>' 35
Data Types Description 9
DC100-1 Addressing 25
DC100-2 Addressing 27
Device '<device name>' is not responding 37
Device address '<address>' contains a syntax error 35
Device address '<address>' is Read Only 35
Device ID 5
Device Setup 5
Device Status Messages 37
DR130 Addressing 14
DR231 Addressing 16
DR232 Addressing 19

DR242 Addressing 23 Ε Error Descriptions 234 Error opening COMn 37 F Float 9 M Missing address 35 Modem Setup 5 Ν Network 5 0 Overview 4 S Serial Communications 36 Short 9 T The device '<device name>' responded with a NAK to a read request starting at address '<address>'. The requested address may not exist in the device 35 U Unable to set comm parameters on COMn 37 Unable to write tag '<address>' on device '<device name>' 38

W

Word 9